scholarly journals Legacies of the Tohoku Earthquake and Tsunami Impacting the Northern California Current in the Eastern North Pacific Ocean

2021 ◽  
Author(s):  
Richard Brodeur ◽  
Jessica Miller ◽  
John Chapman ◽  
Gayle Hansen ◽  
Delvan Neville
2013 ◽  
Vol 10 (8) ◽  
pp. 5729-5738 ◽  
Author(s):  
M. Kitamura ◽  
Y. Kumamoto ◽  
H. Kawakami ◽  
E. C. Cruz ◽  
K. Fujikura

Abstract. The magnitude of the 9.0 Tohoku earthquake and the ensuing tsunami on 11 March 2011, inflicted heavy damage on the Fukushima Dai-ichi nuclear power plant (FNPP1). Fission products were emitted, falling over a broad range in the Northern Hemisphere, and water contaminated with radionuclides leaked into the ocean. In this study, we described the horizontal distribution of the Fukushima-derived radiocesium in zooplankton and in seawater in the western North Pacific Ocean (500–2100 km from the FNPP1) 10 months after the accident. 134Cs and 137Cs were detected in zooplankton and seawater from all the stations. Because of its short half-life, the 134Cs detected in our samples could only be derived from the FNPP1 accident. The highest 137Cs activity in zooplankton was the same order of magnitude as it was one month after the accident, and average activity was one or two orders of magnitude higher than 137Cs activities observed before the accident around Japan. Horizontally, the radiocesium activity concentrations in zooplankton were high at around 25° N while those in surface seawater were high at around the transition area between the Kuroshio and the Oyashio currents (36–40° N). We observed subsurface radiocesium maxima in density range of the North Pacific Subtropical Mode Water and the occurrence of many diel vertical migratory zooplankton. These suggested that the high activity concentrations in the subtropical zooplankton at around 25° N were connected to the subsurface radiocesium and active vertical migration of zooplankton. However, the high activity concentrations of radiocesium in subsurface seawater did not necessarily correlate with the higher radiocesium activity in zooplankton. Activity concentrations of radiocesium in zooplankton might be influenced not only by the environmental radiocesium activity concentrations but also by other factors, which are still unknown.


2021 ◽  
Author(s):  
Guillermo Auad

The California Current System is described in its regional setting using two modern datasets. Argo provides a broadscale view of the entire eastern North Pacific Ocean for the period 2004–2010, and the High Resolution XBT Network includes transects from Honolulu to San Francisco (1991–2010) and to Los Angeles (2008–2010). Together these datasets describe a California Current of 500–800 km width extending along the coast from 43°N to 23°N. The mean southward transport of the California Current is about 5 Sv off Central and Southern California, with about 2.5 Sv of northward flow on its inshore side. Interannual variations are 50% or more of the mean transports. The salinity minimum in the core of the California Current is supplied by the North Pacific Current and by freshwater from the northern continental shelf and modified by alongshore geostrophic and across-shore Ekman advection as well as eddy fluxes and air–sea exchange. The heat and freshwater content of the California Current vary in response to the fluctuating strength of the alongshore geostrophic flow. On its offshore side, the California Current is influenced by North Pacific Intermediate Waters at its deepest levels and by Eastern Subtropical Mode Waters on shallower density surfaces. In total, the sources of the California Current, its alongshore advection, and its strong interactions with the inshore upwelling region and the offshore gyre interior combine to make this a rich and diverse ecosystem. The present work reviews previous contributions to the regional oceanography, and uses the new datasets to paint a spatially and temporally more comprehensive description than was possible previously.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 388
Author(s):  
Hao Cheng ◽  
Liang Sun ◽  
Jiagen Li

The extraction of physical information about the subsurface ocean from surface information obtained from satellite measurements is both important and challenging. We introduce a back-propagation neural network (BPNN) method to determine the subsurface temperature of the North Pacific Ocean by selecting the optimum input combination of sea surface parameters obtained from satellite measurements. In addition to sea surface height (SSH), sea surface temperature (SST), sea surface salinity (SSS) and sea surface wind (SSW), we also included the sea surface velocity (SSV) as a new component in our study. This allowed us to partially resolve the non-linear subsurface dynamics associated with advection, which improved the estimated results, especially in regions with strong currents. The accuracy of the estimated results was verified with reprocessed observational datasets. Our results show that the BPNN model can accurately estimate the subsurface (upper 1000 m) temperature of the North Pacific Ocean. The corresponding mean square errors were 0.868 and 0.802 using four (SSH, SST, SSS and SSW) and five (SSH, SST, SSS, SSW and SSV) input parameters and the average coefficients of determination were 0.952 and 0.967, respectively. The input of the SSV in addition to the SSH, SST, SSS and SSW therefore has a positive impact on the BPNN model and helps to improve the accuracy of the estimation. This study provides important technical support for retrieving thermal information about the ocean interior from surface satellite remote sensing observations, which will help to expand the scope of satellite measurements of the ocean.


2021 ◽  
Author(s):  
R. J. David Wells ◽  
Veronica A. Quesnell ◽  
Robert L. Humphreys ◽  
Heidi Dewar ◽  
Jay R. Rooker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document