scholarly journals Diagnosing metabolic acidosis in chronic kidney disease: importance of blood pH and serum anion gap

Author(s):  
Jun-Ya Kaimori ◽  
Yusuke Sakaguchi ◽  
Sachio Kajimoto ◽  
Yuta Asahina ◽  
Tatsufumi Oka ◽  
...  
2020 ◽  
Vol 68 (2) ◽  
pp. 169-176
Author(s):  
Piotr Sławuta ◽  
Agnieszka Sikorska-Kopyłowicz ◽  
Grzegorz Sapikowski

AbstractMetabolic acidosis is diagnosed based on the concentration of bicarbonate ions and partial pressure of carbon dioxide in arterial blood, although acid–base balance (ABB) disorders may also be diagnosed based on the serum ion concentrations in order to determine the values of strong ion difference (SID), anion gap (AG), corrected anion gap (AGcorr) and chloride/sodium ratio (Cl−/Na+). The aim of this study was to assess and compare the classic model, the value of the AG, AGcorr, and Cl−/Na+ in the diagnosis of ABB disorders in cats with chronic kidney disease (CKD). The study group consisted of 80 cats with CKD, divided into four groups based on the guidelines of the International Renal Interest Society (IRIS). The control group (C) included 20 healthy cats. Metabolic acidosis – diagnosed based on the classic model (Hendersson–Hasselbalch equation) – was found in IRIS group IV. AG, AGcorr, SID calculated for IRIS groups II, III and IV were lower than in group C, while the value of AGdiff and Cl−/Na+ in those groups was higher than in group C. We can conclude that ABB analysis using the classic model enabled the detection of ABB disorders in cats in stage IV CKD. However, the analysis of the AG, AGcorr and Cl−/Na+ values enabled the diagnosis of acid–base balance disorders in cats with IRIS stage II, III and IV CKD.


Author(s):  
Salman Mansoor ◽  
Lize De Klerk ◽  
James Lineen ◽  
Muhammad Fahad ◽  
Imran Ali ◽  
...  

Abstract Background Lentiform fork sign is a neuroradiological abnormality which is encountered in the clinical practice associated with uremic encephalopathy, dialysis disequilibrium syndrome and metabolic acidosis. Case presentation We describe here a case of this neuro-radiological abnormality which was encountered in a patient with uraemia and high anion gap metabolic acidosis who presented with generalised convulsion and later had some tremor in her hands. In our patient, there were few predisposing factors which might have possibly resulted in this abnormality chronic kidney disease, diabetes mellitus, and metabolic acidosis. Conclusion The Lentiform fork sign is a rare occurrence which can be related to a long list of toxic and metabolic causes but in conjunction with metabolic acidosis in chronic kidney disease patients, it can narrow down this list of alternate diagnosis.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ilter Bozaci ◽  
Ali Nazmi Can Doğan ◽  
Merve Aktar ◽  
Alev Mahşer ◽  
Gizem Yıldırım ◽  
...  

AbstractObjectivesMetabolic acidosis is a common disorder seen in course of chronic kidney disease (CKD). In this study, we aimed to investigate the association of Base excess (BE), Anion gap (AG) and Delta Ratio with progression of CKD, renal replacement therapy (RRT) requirement and mortality in patients with stage 3–5 CKD.MethodsA total of 212 patients with stage 3–5 CKD were included in this study. Patients were divided into two groups according to the baseline BE level. Patients were also grouped according to the delta ratio such as non- AG, High AG and mixed type.ResultsMean BE level was significantly lower (−4.7 ± 4.0 vs. −3.3 ± 4.3; p=0.02) in patients with CKD progression. The patients in group 1 (n: 130) (Be<−2.5) revealed more CKD progression (%53 vs. %32; p=0.002), and RRT requirement (%35 vs. %15; p=0.001). Baseline BE <−2.5 (odds ratio, 0.38; 95% CI, 0.16 to 0.91; p<0.05) and baseline GFR (odds ratio, 0.94; 95% CI, 0.90 to 0.97; p<0.001) were independently related to RRT requirement. Delta BE was independently associated with mortality (odds ratio, 0.90; 95% CI, 0.85–0.96; p<0.01).ConclusionsLow BE levels were associated with CKD progression and RRT requirement. BE change is associated with mortality during the follow-up of those patients.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
María M. Adeva-Andany ◽  
Carlos Fernández-Fernández ◽  
David Mouriño-Bayolo ◽  
Elvira Castro-Quintela ◽  
Alberto Domínguez-Montero

Metabolic acidosis occurs when a relative accumulation of plasma anions in excess of cations reduces plasma pH. Replacement of sodium bicarbonate to patients with sodium bicarbonate loss due to diarrhea or renal proximal tubular acidosis is useful, but there is no definite evidence that sodium bicarbonate administration to patients with acute metabolic acidosis, including diabetic ketoacidosis, lactic acidosis, septic shock, intraoperative metabolic acidosis, or cardiac arrest, is beneficial regarding clinical outcomes or mortality rate. Patients with advanced chronic kidney disease usually show metabolic acidosis due to increased unmeasured anions and hyperchloremia. It has been suggested that metabolic acidosis might have a negative impact on progression of kidney dysfunction and that sodium bicarbonate administration might attenuate this effect, but further evaluation is required to validate such a renoprotective strategy. Sodium bicarbonate is the predominant buffer used in dialysis fluids and patients on maintenance dialysis are subjected to a load of sodium bicarbonate during the sessions, suffering a transient metabolic alkalosis of variable severity. Side effects associated with sodium bicarbonate therapy include hypercapnia, hypokalemia, ionized hypocalcemia, and QTc interval prolongation. The potential impact of regular sodium bicarbonate therapy on worsening vascular calcifications in patients with chronic kidney disease has been insufficiently investigated.


2021 ◽  
Vol 30 (3) ◽  
pp. 369-376
Author(s):  
Megan Chalupsky ◽  
David Alex Goodson ◽  
Jorge L. Gamboa ◽  
Baback Roshanravan

2020 ◽  
Vol 8 (19) ◽  
pp. 1256-1256
Author(s):  
John Sy ◽  
Joline L. T. Chen ◽  
Kamyar Kalantar-Zadeh

Sign in / Sign up

Export Citation Format

Share Document