scholarly journals OPTIMIZATION OF DISSIMILAR MATERIALS ON STAINLESS STEEL (316L) AND MILD STEEL (IS2062) IN MIG WELDING PROCESS

2017 ◽  
Vol 904 ◽  
pp. 19-23
Author(s):  
Van Nhat Nguyen ◽  
Quoc Manh Nguyen ◽  
Dang Thi Huong Thao ◽  
Shyh Chour Huang

Welding dissimilar materials has been widely applied in industries. Some of them are considered this as a strategy to develop their future technology products. Aluminum alloy and stainless steel have differences in physical, thermal, mechanical and metallurgic properties. However, selecting a suitable welding process and welding rods can solve this problem. This research aimed to investigate the T-joint welding between A6061 aluminum alloy and SUS304 stainless steel using new welding rods, Aluma-Steel by the Tungsten Inert Gas (TIG) welding process. The mechanical properties, the characteristics of microstructure, and component analysis of the welds have been investigated by the mechanical testing, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). As a result, the fracture occurred at the adjacent area between welding seam and A6061 alloys plate. The thermal cracking appeared at central welding-seam along the base metals if high welding current. A large amount of copper elements found in the welds due to using the new welding rod, Aluma-Steel rod.


Author(s):  
Mohd Ridha Muhamad ◽  
Sufian Raja ◽  
Mohd Fadzil Jamaludin ◽  
Farazila Yusof ◽  
Yoshiaki Morisada ◽  
...  

Abstract Dissimilar materials joining between AZ31 magnesium alloy and SPHC mild steel with Al-Mg powder additives were successfully produced by friction stir welding process. Al-Mg powder additives were set in a gap between AZ31 and SPHC specimen's butt prior to welding. The experiments were performed for different weight percentages of Al-Mg powder additives at welding speeds of 25 mm/min, 50 mm/min and 100 mm/min with a constant tool rotational speed of 500 rpm. The effect of powder additives and welding speed on tensile strength, microhardness, characterization across welding interface and fracture morphology were investigated. Tensile test results showed significant enhancement of tensile strength of 150 MPa for 10% Al and Mg (balance) powder additives welded joint as compared to the tensile strength of 125 MPa obtained for welded joint without powder additives. The loss of aluminium in the alloy is compensated by Al-Mg powder addition during welding under a suitable heat input condition identified by varying welding speeds. Microstructural analysis revealed that the Al-Mg powder was well mixed and dispersed at the interface of the joint at a welding speed of 50 mm/min. Intermetallic compound detected in the welding interface contributed to the welding strength.


2012 ◽  
Vol 2012.20 (0) ◽  
pp. _401-1_-_401-2_
Author(s):  
Toshiya IKEGAMI ◽  
Takahisa YAMAZAKI ◽  
Akio SUZUMURA ◽  
Toshi-taka IKESHOJI

2015 ◽  
Vol 1088 ◽  
pp. 130-134
Author(s):  
Ya Rong Wang ◽  
Yang Yu ◽  
Wei Chao Zhang

The high vacuum electron beam welding-brazing was used to joining vanadium alloy (V-5Cr-5Ti) with stainless–steel (HR-2). The temperature fields and stress distributions in the V-5Cr-5Ti/HR-2 joint during the welding process were numerically simulated and the effect of the electron beam off-set distance was studied. The results show that the accurate heat input and proper molten pool position can help to control the fusion ratio of the V/Fe. The electron beam should off set on the stainless steel side rather than vanadium alloy side, and the best range of the distances off-set is 0-0.5mm. The residual stress appears to be bimodal and asymmetric. The maximum lateral residual tensile stress reached 388MPa at the V-5Cr-5Ti side. The joints with the characters of welding and brazing and the metallurgically bonded joint was achieved with 0.3mm beam off-set. With the liquid-to-solid interalloying of dissimilar materials controlled well, a reaction zone is gained on the interface. The maximum tensile strength of vanadium alloy/stainless-steel dissimilar alloy jointswas up to 200MPa with no defect.


Author(s):  
G.T. Gopalakrishna ◽  
B.S. Ajaykumar ◽  
K.R. Vishnu

Austenitic stainless steels are very important material and extensively used for various applications in fertilizer industry, petrochemical industry, nuclear industry and food industry. Austenitic stainless steel 316L alloyed with small percentage of nitrogen is called 316LN. 316LN is widely used only in nuclear applications and it is also called high temperature steels. This nitrogen alloyed steels 316LN will work at higher temperature environment along with radiation environment without losing its properties. The welding of this 316LN steel poses challenge due to problems like sensitization to inter granular corrosion, stress corrosion cracking and even hot cracking. Selecting the type of welding and filler material is more important for welding the 316LN austenitic stainless steel (SS). In this paper SS 316LN material is being welded with TIG and MIG welding. Three pairs of SS 316LN plates were used for experimental work. Filler electrode ER316L is used for TIG and MIG121 is used for MIG welding. After the welding process, hardness test, tensile test and bending test were performed to check the mechanical properties of the specimen. Microstructure of the specimen is observed at the weld region. The results show that the welded joint is stronger than the base material in TIG welding process compared to MIG welding, combination of TIG and MIG welding. Hardness values are observed to be higher at the weld region than the base material. Tensile test results show that the ultimate tensile strength of welded plate is greater than that of base materials and TIG welding process is better than other two processes. The microstructure images show that there is a continuous and uniform welding and the joint is defect free from cracks.


The present work analyses MIG in terms of strength and consumption of energy during joining of similar AISI 1018 Mild Steel plates. Sustainable manufacturing is the creation of various manufactured products that generally use different processes that will minimize negative impact on environment, conserve natural resources and energy, are also safe for the employees, consumers and communities as well as economically sound. Sustainable manufacturing highlights on the necessity of an energy effective process that optimize consumption of energy. AISI 1018 mild steel is extensively used in automotive industries for pins, worms, dowels gears, non-critical tool components etc. Main important output responses are Tensile Strength and energy consumption during MIG Welding Process by taking Current, Travel Speed and Voltage as effective input variables. The main objective is to optimize energy consumption as well as tensile strength also determination of main influential process parameters on energy Consumption and tensile strength by using Taguchi Method. Contour plot has been also shown.


2013 ◽  
Vol 834-836 ◽  
pp. 1553-1556
Author(s):  
Han Wu Liu ◽  
Lei Huang ◽  
Xiang Guo ◽  
Yu Long Lv

The connecting pipe in solar hot water system is made by TIG welding of thin-walled stainless steel and copper. As the welding of stainless steel and copper belongs to dissimilar metal welding and their physical properties are very different, thus the welding process is difficult and it is likely to cause a variety of defects in the welding process. In this paper, ANSYS software is used to simulate the welding process of stainless steel and copper, and the residual stress distributions in the welding process are obtained. The results show that: at the end of the welding cooling, large residual stress (253MPa) is remained in the junction area of the starting and ending position of welding, which is close to the yield strength of material at the same temperature. Therefore, there will be greater deformation in the junction area and more cracks inside. Meanwhile, the stress distributions of stainless steel and copper tubes in the welding process are greatly different. Different volume changes emerge in two tubes, which are harmful to the welding seam and also leads to the unfitness of dimensional tolerance of welding parts, resulting in the scrapping of welding parts. The results provide references and theoretical basis for the welding technology of dissimilar materials.


Sign in / Sign up

Export Citation Format

Share Document