scholarly journals Canopy Cover Temperature & Drought Tolerance Indices in Durum Wheat (Triticum durum Desf.) Genotypes under Semi-arid Condition in Algeria

2021 ◽  
Vol 12 (6) ◽  
pp. 638-644
Author(s):  
Ali Guendouz ◽  
◽  
Benalia Frih ◽  
Abdelmalek Oulmi ◽  
◽  
...  

This experiment was carried out at Setif Agricultural Experimental Station in Algeria during  2017–2018 crop season using five cultivars (Triticum durum Desf.) to determine differences in the relationship between (CT and drought resistance indices values based on their difference in yielding under irrigated and non-irrigated conditions and sown in a random block design with three replications. Our study aim to determine differences in the relationship between CT and drought resistance indices values and grain yield GY under both conditions to evaluate the effect of canopy temperature in drought tolerance of durum wheat. Five durum wheat (Triticum durum Desf.) genotypes were studied based on their difference in yielding under irrigated and non-irrigated conditions in conception of a random block design with three replications. The following measurements were applied: GY, CT canopy cover temperature depression CTD and seven drought tolerance indices (HM-SSI-GMP-STI-YSI-MP-TOL). ANOVA showed that genotype effect and irrigation regime effect were highly and significantly on CT and CTD under both stressed (s) and watered (i) conditions. The interaction Genotype×irrigation regime was significant for CT and CTD. PCA showed that CTDs was related with HM, GMP, STI, and MP in indication of drought tolerance, where CTDi was related with TOL and SSI in indication of drought sensitivity. A negative correlation showed between CT and CTD, higher values ​​of CT compared to environmental temperature implies negative values ​​of CTD which indicates drought sensitivity; on the other hand, CT values ​​lower than environmental temperature implies positive CTD values ​​indicating drought tolerance.

2020 ◽  
Vol 12 (33) ◽  
pp. 174-183
Author(s):  
Hoshang Rahmati ◽  
Ali Nakhzari Moghadam ◽  
Ali RahemiKarizaki ◽  
zeynab avarseji ◽  
◽  
...  

2019 ◽  
Vol 1 (1) ◽  
pp. p18
Author(s):  
Iancu Paula ◽  
Păniță Ovidiu ◽  
Soare Marin

Water is essential to maximize crop yield and quality. This natural resource has assumed huge importance, especially in the warmest areas, where drought and environmental degradation has affected agricultural production. In order to identify drought tolerance of some groundnut genotypes and to investigate the relationships between seed yield, quality and drought tolerance indices a study was made using 10 promising genotypes. The experiment was carried out during 2014-2017 and sowed under randomized block design with four replicates. It included three factors: two levels of irrigation (a1 – non - irrigated and a2 - irrigated), two levels of fertilization (b1 – non-fertilized and b2 - 100 active Nitrogen/ha) and genotype (C1-C10). Seed yield depending on the influence of the factor, varied from 535.95 Kg/ha (non-irrigated) to 2020.95 Kg/ha (irrigated); from 1055.30 Kg/ha (non-fertilized) to 1501 Kg/ha (fertilized) and from 1111.30 Kg/ha to 1388 Kg/ha depending on genotype. Same influence factors for protein content varied from 25.65% (irrigated) to 28.61% (non-irrigated); from 26.33% (non-fertilized) to 27.93% (fertilized) and from 25.59% to 28.52% depending on genotype. Stress susceptibility index (SSI) varied from 0.964 to 1.040; Stress Tolerance Index (STI) from 0.138 to 0.435; Mean Productivity (MP) from 883.5 to 1616.0; Geometric Mean Productivity (GMP) from 750.3 to 1332.7; Tolerance index (TOL) from 933.0 to 1844.0; Harmonic Mean (HM) from 637.2 to 1099.0; Yield Index (YI) 0.777 to 1.308 and Yield Stability Index (YSI) from 0.236 to 0.309. High values of SSI, STI, YI, DI, RDI and SSPI indicate drought tolerance and those variants present high stability.


2014 ◽  
Vol 17 (1) ◽  
pp. 6-12 ◽  
Author(s):  
Naser Sabaghnia ◽  
Mohsen Janmohammadi

Abstract Drought is one of the major abiotic stresses in agriculture worldwide, which limits crop production. The chickpea cultivation areas of Iran are fourth in the world after India, Pakistan and Turkey while most areas (95 %) are planted in rainfed condition and are grown in rotation with cereals. This investigation was carried out to investigate the effect of drought stress seed yield characteristic in seven genotypes of chickpea. A field experiment with two humidity regimes (stressed and non-stressed) was performed in a randomized complete block design layout with three replicates. The analysis of variance for both potential yield (YP) and stress yield (YS) indicated significant differences among seven chickpea genotypes. Also, significant differences were observed among chickpea genotypes regarding twelve drought tolerance indices. Based on the YP, the genotypes FLIP 03-64C, FLIP 98-106C, Arman and Azad had the highest yield under non-stressed condition, while the genotypes FLIP 98-106C and Azad displayed the highest yield under stressed condition. Therefore, the genotypes FLIP 98-106C and Azad are good candidates for commercial recommendation to farmers in both rainfed and irrigated conditions. The relationships among drought tolerance indices are graphically displayed in a plot of two first principal components analysis. The first and second components justified 95.46 % of the variations between criteria (59.36 and 36.10 % for PC1 and PC2, respectively). The STI, K1STI, MP, GMP and PI indices exhibited strong correlation with YP, while YI showed strong correlation with YS; therefore, YS can discriminate drought tolerant genotypes with high grain yield under stress conditions.


2021 ◽  
Vol 12 (6) ◽  
pp. 725-730
Author(s):  
Guendouz Ali ◽  
◽  
Hannachi Abderrahmane ◽  
Fellahi Zine El Abidine ◽  
Benalia Frih ◽  
...  

Breeders are permanently looking for an efficient method of developing genotypes with improved yield. The aim of this study was to evaluate the performance of some durum wheat genotypes, the study of the correlations between traits and the direct effect of each trait on final grain yield. Twenty genotypes of durum wheat (Triticum durum Desf.) were planted in the experimental fields of INRAA, Setif, Algeria in (2016 –2017) crop season. The genotypes tested were grown in a randomized block design with three replications. The analyses of variance (ANOVA) demonstrate the existence of genetic diversity between genotypes tested. In addition, significant and positive correlations were registered between grain yield (GY) and days to heading (DH), number of spikes per square meter (NSM) and number of kernels per spike (NKS). The path analysis (PA) demonstrates positive and significant direct effects of the number of spikes per square meter (NSM), thousand kernels weight (TKW) and number of kernels per spike (NKS) on grain yield. Overall, the results proved that the genotypes Rezzak, Ofanto and BIDI 17 have the best ranking with the highest grain yield, and these can be recommended as the best genotypes for some in this area. In addition, the Principal Component Analysis (PCA) proved that the genotypes Rezzak, Bidi17, Ofanto, Kebir and Adnan 2 are very suitable genotypes for growing under semi-arid conditions.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 875
Author(s):  
Sourour Ayed ◽  
Afef Othmani ◽  
Imen Bouhaouel ◽  
Jaime A. Teixeira da Silva

Durum wheat is the most widely grown cereal in Tunisia, but its production is threatened by drought, which is exacerbated by climate change. This study aimed to identify drought-tolerant durum wheat genotypes from five modern varieties and six landraces in a multi-environment trial at two sites (Kef and Siliana, Tunisia) during three growing seasons under rainfed and irrigated conditions. Six drought tolerance indices (mean productivity (MP), geometric mean productivity (GMP), stress susceptibility index (SSI), tolerance index (TOL), stress tolerance index (STI), and yield stability index (YSI)) were used to evaluate the 11 genotypes. The environment was the dominant source of variation for grain yield (GY; 94.27%), followed by the environment × genotype interaction (4.06%) and genotype (1.65%). Cluster analysis based on GY identified four environment-based groups with distinct water treatments, extreme minimum/maximum temperatures, and rainfall. Principal component analysis and a correlation matrix revealed that drought tolerance indices significantly correlated with GY in non-stressed and stressed conditions and could be separated into four groups. Based on STI, MP, and GMP, G6 and G8 (landraces) were the most drought-tolerant genotypes attaining high GY in both conditions. TOL was able to discriminate G1, G3, and G5 (modern varieties) as well as drought-susceptible genotypes, all of which were suitable for irrigation. Genotypes G7, G9, G10, and G11 (landraces), which had high SSI and lowest STI, MP, GMP, and YSI values, were susceptible to drought and were thus not suitable for cultivation in both conditions. Finally, G2 and G4 (modern varieties), which had an intermediate rank for different indices, were classified as semi-tolerant or sensitive genotypes. Drought tolerance indices and genotype ranks were helpful tools to screen drought-tolerant genotypes with a large adaptation to a range of environments, namely irrigated and rainfed conditions (landraces G6 and G8), or genotypes with the ability to adapt (modern varieties G1, G3, and G5) to irrigated conditions.


Sign in / Sign up

Export Citation Format

Share Document