An Exponentially Stable Adaptive Control Law For Robot Manipulators

Author(s):  
Nader Sadegh ◽  
Roberto Horowitz
Robotica ◽  
2005 ◽  
Vol 23 (1) ◽  
pp. 93-99 ◽  
Author(s):  
Recep Burkan

In this study, a new approach of adaptive control law for controlling robot manipulators using the Lyapunov based theory is derived, thus the stability of an uncertain system is guaranteed. The control law includes a PD feed forward part and a full dynamics feed forward compensation part with the unknown manipulator and payload parameters. The novelty of the obtained result is that an adaptive control algorithm is developed using trigonometric functions depending on manipulator kinematics, inertia parameters and tracking error, and both system parameters and adaptation gain matrix are updated in time.


Author(s):  
H Yu

A general adaptive control approach of robot manipulators using Popov hyperstability is proposed in this paper. The manipulator adaptive control problem is first formulated in a form suitable for the application of hyperstability theory. The adaptive control law is general, and most of the adaptive control laws that have been proposed are special forms of this adaptive control law. The adaptive controller takes advantage of the flexibility in the choice of the adaptive parameters and the controller structure. The adaptive controller guarantees globally asymptotic stability in the hyperstability sense. For input disturbances, the control law, with little modification, maintains satisfactory system performance. Simulation results are presented to evaluate the performance of the adaptive controller for a two link manipulator.


Author(s):  
H Yu ◽  
S Lloyd

An adaptive control scheme for robot manipulators including motor dynamics is proposed in this paper. The proposed scheme avoids the assumption that the values of motor parameters are known which is required in reference (13). An exponential control law is first developed under the assumption of no uncertainty. This forms a controller structure for the adaptive control. Using this control structure, a full-order adaptive control law is proposed to overcome parameter uncertainty for both robot link and motor. The stability analysis is in the Lyapunov stability sense. The method is further extended to the task space. Extensive simulations are performed to compare the different control schemes.


1999 ◽  
Vol 13 (10) ◽  
pp. 667-676 ◽  
Author(s):  
Youngjoo Cho ◽  
Byung Suk Song ◽  
Kyongsu Yi

Sign in / Sign up

Export Citation Format

Share Document