Model-based Control of Automotive Selective Catalytic Reduction Systems with Road Grade Preview

Author(s):  
Yao Ma ◽  
Junmin Wang
Author(s):  
Soo-Jin Jeong ◽  
Woo-Seung Kim ◽  
Jung-Kwon Park ◽  
Ho-Kil Lee ◽  
Se-Doo Oh

The selective catalytic reduction (SCR) system is a highly-effective aftertreatment device for NOx reduction of diesel engines. Generally, the ammonia (NH3) was generated from reaction mechanism of SCR in the SCR system using the liquid urea as the reluctant. Therefore, the precise urea dosing control is a very important key for NOx and NH3 slip reduction in the SCR system. This paper investigated NOx and NH3 emission characteristics of urea-SCR dosing system based on model-based control algorithm in order to reduce NOx. In the map-based control algorithm, target amount of urea solution was determined by mass flow rate of exhaust gas obtained from engine rpm, torque and O2 for feed-back control NOx concentration should be measured by NOx sensor. Moreover, this algorithm cannot estimate NH3 absorbed on the catalyst Hence, the urea injection can be too rich or too lean. In this study, the model-based control algorithm was developed and evaluated based on the analytic model for SCR system. The channel thermo-fluid model coupled with finely tuned chemical reaction model was applied to this control algorithm. The vehicle test was carried out by using map-based and model-based control algorithms in the NEDC mode in order to evaluate the performance of the model based control algorithm.


2019 ◽  
pp. 146808741987459
Author(s):  
Guoyang Wang ◽  
Jinzhu Qi ◽  
Shiyu Liu ◽  
Yanfei Li ◽  
Shijin Shuai ◽  
...  

It is challenging for aqueous urea injection control to achieve high NO x conversion efficiency while restricting tailpipe ammonia (NH3) slip. Optimizing the selective catalytic reduction systems can reduce diesel engine emissions, potentially improve fuel economy and urea utilization efficiency, and finally reduce aftertreatment costs. In this article, a model-based multi-objective genetic algorithm is adopted to optimize selective catalytic reduction systems related to trade-off between NO x emission and NH3 slip. Selective catalytic reduction model is a one-state selective catalytic reduction model based on continuous stirred tank reactor theory, which significantly reduces the computational burden. The optimal NH3 coverage ratio map was obtained globally based on world harmonized transient cycle. The effect of temperature on optimal NH3 coverage ratio, Zonal control logics extracted from the optimal solution, and the control problems on different zones were analyzed. The zonal control logics were validated on multiple test cycle with different initial NH3 coverage ratios. Results show that the zonal control achieves high NO x conversion while restricting the tailpipe NH3 slip. With this method, NO x emission and NH3 slip of optimal solution can meet the requirements of the Euro VI emission regulation for heavy-duty diesel engines.


Sign in / Sign up

Export Citation Format

Share Document