Model-based control of integrated diesel engine and selective catalytic reduction systems

Author(s):  
Siwei Dong ◽  
Carrie M. Hall
2018 ◽  
Author(s):  
Z. Gerald Liu ◽  
Devin R. Berg ◽  
Thaddeus A. Swor ◽  
James J. Schauer‡

Two methods, diesel particulate filter (DPF) and selective catalytic reduction (SCR) systems, for controlling diesel emissions have become widely used, either independently or together, for meeting increasingly stringent emissions regulations world-wide. Each of these systems is designed for the reduction of primary pollutant emissions including particulate matter (PM) for the DPF and nitrogen oxides (NOx) for the SCR. However, there have been growing concerns regarding the secondary reactions that these aftertreatment systems may promote involving unregulated species emissions. This study was performed to gain an understanding of the effects that these aftertreatment systems may have on the emission levels of a wide spectrum of chemical species found in diesel engine exhaust. Samples were extracted using a source dilution sampling system designed to collect exhaust samples representative of real-world emissions. Testing was conducted on a heavy-duty diesel engine with no aftertreatment devices to establish a baseline measurement and also on the same engine equipped first with a DPF system and then a SCR system. Each of the samples was analyzed for a wide variety of chemical species, including elemental and organic carbon, metals, ions, n-alkanes, aldehydes, and polycyclic aromatic hydrocarbons, in addition to the primary pollutants, due to the potential risks they pose to the environment and public health. The results show that the DPF and SCR systems were capable of substantially reducing PM and NOx emissions, respectively. Further, each of the systems significantly reduced the emission levels of the unregulated chemical species, while the notable formation of new chemical species was not observed. It is expected that a combination of the two systems in some future engine applications would reduce both primary and secondary emissions significantly.


Author(s):  
Vít Marek ◽  
Lukáš Tunka ◽  
Adam Polcar ◽  
Dušan Slimařík

This paper deals with reduction of NOx-emission of a diesel engine with multiple injection pump by SCR catalytic converter. Main aim of the measurement was the detection of SCR catalyst converter efficiency. Tests were realized at the Research and Development workplace of Zetor Tractor a.s. Used engine was equipped with a multiple injection pump with electromagnetic regulator of a fuel charge. During the experiment selective catalytic reduction and diesel particulate filter were used as an after treatment of harmful pollutants reduction. Testing cycle of the eight-point test was chosen and Non-Road Steady Cycle (NRSC) was maintained according to 97/68/EC directive. Results confirmed the dependencies between temperatures of SCR catalyst and exhaust gases and the volume of exhaust gases on efficiency of SCR catalyst. During the operation load of the engine, selective catalytic reduction reached efficiency over 90 %. Used after treatment system is suitable for reduction of harmful pollutants according to the Tier 4f norm.


Sign in / Sign up

Export Citation Format

Share Document