scholarly journals Impedance Modulation for Negotiating Control Authority in a Haptic Shared Control Paradigm

Author(s):  
Vahid Izadi ◽  
Akshay Bhardwaj ◽  
Amir H. Ghasemi
Author(s):  
Daniel Saraphis ◽  
Vahid Izadi ◽  
Amirhossein Ghasemi

Abstract In this paper, we aim to develop a shared control framework wherein the control authority is dynamically allocated between the human operator and the automation system. To this end, we have defined a shared control paradigm wherein the blending mechanism uses the confidence between a human and co-robot to allocate the control authority. To capture the confidence between the human and robot, qualitatively, a simple-but-generic model is presented wherein the confidence of human-to-robot and robot-to-human is a function of the human’s performance and robot’s performance. The computed confidence will then be used to adjust the level of autonomy between the two agents dynamically. To validate our novel framework, we propose case studies in which the steering control of a semi-automated system is shared between the human and onboard automation systems. The numerical simulations demonstrate the effectiveness of the proposed shared control paradigms.


2020 ◽  
Vol 10 (7) ◽  
pp. 2626 ◽  
Author(s):  
Hanbing Wei ◽  
Yanhong Wu ◽  
Xing Chen ◽  
Jin Xu

For investigating driver characteristic as well as control authority allocation during the process of human–vehicle shared control (HVSC) for an autonomous vehicle (AV), a HVSC dynamic mode with a driver’s neuromuscular (NMS) state parameters was proposed in this paper. It takes into account the driver’s NMS characteristics such as stretch reflection and reflex stiffness. By designing a model predictive control (MPC) controller, the vehicle’s state feedback and driver’s state are incorporated to construct the HVSC dynamic model. For the validation of the model, a field experiment was conducted. The vehicle state signals are collected by V-BOX, and the driver’s state signals are obtained with the electromyography instrument. Subsequently, the hierarchical least square (HLS) parameter identification algorithm was implemented to identify the parameters of the model based on the experimental results. Moreover, the Unscented Kalman Filter (UKF) was utilized to estimate the important NMS parameters which cannot be measured directly. The experimental results showed that the model we proposed has excellent accuracy in characterizing the vehicle’s dynamic state and estimating the driver’s NMS parameter. This paper will serve as a theoretical basis for the new control strategy allocation between human and vehicle for L3 class AVs.


Author(s):  
Amir H. Ghasemi

Haptic shared control is expected to achieve a smooth collaboration between humans and automated systems, because haptics facilitate mutual communication. This paper addresses a the interaction between the human driver and automation system in a haptic shared control framework using a non-cooperative model predictive game approach. In particular, we focused on a scenario in which both human and automation system detect an obstacle but select different paths for avoiding it. For such a scenario, the open-loop Nash steering control solution is derived and the influence of the human driver’s impedance and path following weights on the vehicle trajectory are investigated. It is shown that by modulating the impedance and the path following weight the control authority can be shifted between the human driver and the automation system.


Author(s):  
Sangjin Ko ◽  
Reza Langari

Abstract Shared control is a control framework in which control action is shared between a human driver and an automation. In this work, the shared control is studied based on game theoretical approach of distributed model predictive control (DMPC). The solution of cooperative game is derived under DMPC framework, and then realistic driving situation is studied in cooperative game framework. Shared control strategy for fully mixed driving authority is proposed considering collision probability based on TTC (time to collision) and tracking error. Simulations were conducted using Matlab/Simulik in cooperative driving. The simulation scenarios consist of safety critical situation and non-safety critical situation. In safety critical situation, an automation takes more control authority to avoid a collision, and in non-safety critical situation a human driver takes more control authority. The simulation results show that the control authority is shared continuously by the proposed shared control strategy.


Sign in / Sign up

Export Citation Format

Share Document