Low complexity user pairing algorithm for in-band full-duplex networks with power control

Author(s):  
Sanghwa Lee ◽  
Minho Yang ◽  
Tae Woo Kim ◽  
Dong Ku Kim
2020 ◽  
Vol 68 (11) ◽  
pp. 6737-6749
Author(s):  
Phuc Huu ◽  
Mohamed Amine Arfaoui ◽  
Sanaa Sharafeddine ◽  
Chadi M. Assi ◽  
Ali Ghrayeb

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Hyun-Ho Choi ◽  
Wonjong Noh

In a full-duplex (FD) cellular network, a base station transmits data to the downlink (DL) user and receives data from uplink (UL) users at the same time; thereby the interference from UL users to DL users occurs. One of the possible solutions to reduce this interuser interference in the FD cellular network is user pairing, which pairs a DL user with a UL user so that they use the same radio resource at the same time. In this paper, we consider a user pairing problem to minimize outage probability and formulate it as a nonconvex optimization problem. As a solution, we design a low-complexity user pairing algorithm, which first controls the UL transmit power to minimize the interuser interference and then allows the DL user having a worse signal quality to choose first its UL user giving less interference to minimize the outage probability. Then, we perform theoretical outage analysis of the FD cellular network on the basis of stochastic geometry and analyze the performance of the user pairing algorithm. Results show that the proposed user pairing significantly decreases the interuser interference and thus improves the DL outage performance while satisfying the requirement of UL signal-to-interference-plus-noise ratio, compared to the conventional HD mode and a random pairing. We also reveal that there is a fundamental tradeoff between the DL outage and UL outage according to the user pairing strategy (e.g., throughput maximization or outage minimization) in the FD cellular network.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Wonjong Noh ◽  
Wonjae Shin ◽  
Hyun-Ho Choi

In a full duplexing (FD) wireless cellular network, a base station operates in FD mode, while the downlink (DL) and uplink (UL) users operate in half duplexing (HD) mode. Thus, the downlink and uplink transmissions occur simultaneously so that interuser interference from a UL to a DL user occurs. In an FD network, the main challenge to minimize the interuser interference is user pairing, which determines a pair of DL and UL users who use the same radio resource simultaneously. We formulate a nonconvex optimization problem for user pairing to maximize the cell throughput. Then, we propose a heuristic user pairing algorithm with low complexity. This algorithm is designed such that the DL user having a better signal quality has higher priority to choose its paired UL user for throughput maximization. Thereafter, we conduct theoretical performance analysis of the FD cellular system based on stochastic geometry and analyze the impact of the user paring algorithm on the performance of the FD cellular system. Results show that the FD system that uses the proposed user pairing algorithm effectively reduces the interuser interference and approaches optimal performance. It also considerably outperforms the FD system using a random user pairing and almost doubles the conventional HD system in terms of cell throughput.


Author(s):  
Chao Chen ◽  
Zheng Meng ◽  
Seung Jun Baek ◽  
Xiaohan Yu ◽  
Chuanhuang Li ◽  
...  

Author(s):  
Ranran Sun ◽  
Bin Yang ◽  
Siqi Ma ◽  
Yulong Shen ◽  
Xiaohong Jiang

Sign in / Sign up

Export Citation Format

Share Document