scholarly journals Outage Analysis of User Pairing Algorithm for Full-Duplex Cellular Networks

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Hyun-Ho Choi ◽  
Wonjong Noh

In a full-duplex (FD) cellular network, a base station transmits data to the downlink (DL) user and receives data from uplink (UL) users at the same time; thereby the interference from UL users to DL users occurs. One of the possible solutions to reduce this interuser interference in the FD cellular network is user pairing, which pairs a DL user with a UL user so that they use the same radio resource at the same time. In this paper, we consider a user pairing problem to minimize outage probability and formulate it as a nonconvex optimization problem. As a solution, we design a low-complexity user pairing algorithm, which first controls the UL transmit power to minimize the interuser interference and then allows the DL user having a worse signal quality to choose first its UL user giving less interference to minimize the outage probability. Then, we perform theoretical outage analysis of the FD cellular network on the basis of stochastic geometry and analyze the performance of the user pairing algorithm. Results show that the proposed user pairing significantly decreases the interuser interference and thus improves the DL outage performance while satisfying the requirement of UL signal-to-interference-plus-noise ratio, compared to the conventional HD mode and a random pairing. We also reveal that there is a fundamental tradeoff between the DL outage and UL outage according to the user pairing strategy (e.g., throughput maximization or outage minimization) in the FD cellular network.

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Wonjong Noh ◽  
Wonjae Shin ◽  
Hyun-Ho Choi

In a full duplexing (FD) wireless cellular network, a base station operates in FD mode, while the downlink (DL) and uplink (UL) users operate in half duplexing (HD) mode. Thus, the downlink and uplink transmissions occur simultaneously so that interuser interference from a UL to a DL user occurs. In an FD network, the main challenge to minimize the interuser interference is user pairing, which determines a pair of DL and UL users who use the same radio resource simultaneously. We formulate a nonconvex optimization problem for user pairing to maximize the cell throughput. Then, we propose a heuristic user pairing algorithm with low complexity. This algorithm is designed such that the DL user having a better signal quality has higher priority to choose its paired UL user for throughput maximization. Thereafter, we conduct theoretical performance analysis of the FD cellular system based on stochastic geometry and analyze the impact of the user paring algorithm on the performance of the FD cellular system. Results show that the FD system that uses the proposed user pairing algorithm effectively reduces the interuser interference and approaches optimal performance. It also considerably outperforms the FD system using a random user pairing and almost doubles the conventional HD system in terms of cell throughput.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Jianguo Li ◽  
Xiangming Li ◽  
Aihua Wang ◽  
Neng Ye

Enabling nonorthogonal multiple access (NOMA) in device-to-device (D2D) communications under the millimeter wave (mmWave) multiple-input multiple-output (MIMO) cellular network is of critical importance for 5G wireless systems to support low latency, high reliability, and high throughput radio access. In this paper, the closed-form expressions for the outage probability and the ergodic capacity in downlink MIMO-NOMA mmWave cellular network with D2D communications are considered, which indicates that NOMA outperforms TDMA. The influencing factors of performance, such as transmission power and antenna number, are also analyzed. It is found that higher transmission power and more antennas in the base station can decrease the outage probability and enhance the ergodic capacity of NOMA.


Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2182
Author(s):  
Ngo Tan Vu Khanh ◽  
Van Dinh Nguyen

The skyrocketing growth in the number of Internet of Things (IoT) devices has posed a huge traffic demand for fifth-generation (5G) wireless networks and beyond. In-band full-duplex (IBFD), which is theoretically expected to double the spectral efficiency of a half-duplex wireless channel and connect more devices, has been considered as a promising technology in order to accelerate the development of IoT. In order to exploit the full potential of IBFD, the key challenge is how to handle network interference (including self-interference, co-channel interference, and multiuser interference) more effectively. In this paper, we propose a simple yet efficient user grouping method, where a base station (BS) serves strong downlink users and weak uplink users and vice versa in different frequency bands, mitigating severe network interference. First, we aim to maximize a minimum rate among all of the users subject to bandwidth and power constraints, which is formulated as a nonconvex optimization problem. By leveraging the inner approximation framework, we develop a very efficient iterative algorithm for solving this problem, which guarantees at least a local optimal solution. The proposed iterative algorithm solves a simple convex program at each iteration, which can be further cast to a conic quadratic program. We then formulate the optimization problem of sum throughput maximization, which can be solved by the proposed algorithm after some slight modifications. Extensive numerical results are provided to show not only the benefit of using full-duplex radio at BS, but also the advantage of the proposed user grouping method.


2021 ◽  
Vol 10 (3) ◽  
pp. 1380-1387
Author(s):  
Thanh-Luan Nguyen ◽  
Dinh-Thuan Do

Device-to-device (D2D) communication has been proposed to employ the proximity between two devices to enhance the overall spectrum utilization of a crowded cellular network. With the help of geometric probability tools, this framework considers the performance of cellular users under spatial separation with the D2D pair is investigated. The measurement results and analytical expression of outage probability show that the proposed frameworks improve the outage performance at a high signal-tonoise ratio (SNR) at the base station. Results also interpret that the distances between nodes in the D2D-assisted network make slight impacts on the performance of the cellular user.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Pengyu Liu ◽  
Xiaojuan Zhou ◽  
Zhangdui Zhong

This paper analyzes the end-to-end outage performance of high-speed-railway train-to-train communication model in high-speed railway over independent identical and nonidentical Nakagami-mchannels. The train-to-train communication is inter-train communication without an aid of infrastructure (for base station). Source train uses trains on other rail tracks as relays to transmit signals to destination train on the same track. The mechanism of such communication among trains can be divided into three cases based on occurrence of possible-occurrence relay trains. We first present a new closed form for the sum of squared independent Nakagami-mvariates and then derive an expression for the outage probability of the identical and non-identical Nakagami-mchannels in three cases. In particular, the problem is improved by the proposed formulation that statistic for sum of squared Nakagami-mvariates with identicalmtends to be infinite. Numerical analysis indicates that the derived analytic results are reasonable and the outage performance is better over Nakagami-mchannel in high-speed railway scenarios.


Entropy ◽  
2021 ◽  
Vol 23 (9) ◽  
pp. 1161
Author(s):  
Zhenwei Zhang ◽  
Hua Qu ◽  
Jihong Zhao ◽  
Wei Wang

Cooperative Non-Orthogonal Multiple Access (NOMA) with Simultaneous Wireless Information and Power Transfer (SWIPT) communication can not only effectively improve the spectrum efficiency and energy efficiency of wireless networks but also extend their coverage. An important design issue is to incentivize a full duplex (FD) relaying center user to participate in the cooperative process and achieve a win–win situation for both the base station (BS) and the center user. Some private information of the center users are hidden from the BS in the network. A contract theory-based incentive mechanism under this asymmetric information scenario is applied to incentivize the center user to join the cooperative communication to maximize the BS’s benefit utility and to guarantee the center user’s expected payoff. In this work, we propose a matching theory-based Gale–Shapley algorithm to obtain the optimal strategy with low computation complexity in the multi-user pairing scenario. Simulation results indicate that the network performance of the proposed FD cooperative NOMA and SWIPT communication is much better than the conventional NOMA communication, and the benefit utility of the BS with the stable match strategy is nearly close to the multi-user pairing scenario with complete channel state information (CSI), while the center users get the satisfied expected payoffs.


2021 ◽  
Vol 10 (4) ◽  
pp. 2302-2309
Author(s):  
Chi-Bao Le ◽  
Dinh-Thuan Do

A downlink of small-cell network is studied in this paper studies in term of outage performance. We benefit by design of multiple antennas at the base station and fullduplex transmission mode. The scenario of multiple surrounded small-cell networks is considered to look the impact of interference. We derive the closed-form expression of outage probability to show performance of mobile user. We investigate target rate is main factor affecting to outage performance. According to the considered system, simulation results indicate reasonable value of outage probability and throughput as well. Finally, Monte-Carlo simulation method is deployed to determine exactness of main results found in this article. Finally, the considered system can exhibit improved performance if controlling interference term.


Author(s):  
Natalya Ivanovna Shaposhnikova ◽  
Alexander Aleksandrovich Sorokin

The article consideres the problems of determining the need to modernize the base stations of the cellular network based on the mathematical apparatus of the theory of fuzzy sets. To improve the quality of telecommunications services the operators should send significant funding for upgrading the equipment of base stations. Modernization can improve and extend the functions of base stations to provide cellular communication, increase the reliability of the base station in operation and the functionality of its individual elements, and reduce the cost of maintenance and repair when working on a cellular network. The complexity in collecting information about the equipment condition is determined by a large number of factors that affect its operation, as well as the imperfection of obtaining and processing the information received. For a comprehensive assessment of the need for modernization, it is necessary to take into account a number of indicators. In the structure of indicators of the need for modernization, there were introduced the parameters reflecting both the degree of aging and obsolescence(the technical gap and the backlog in connection with the emergence of new technologies and standards). In the process of a problem solving, the basic stages of decision-making on modernization have been allocated. Decision-making on the need for modernization is based not only on measuring information that takes into account the decision-makers, but also on linguistic and verbal information. Therefore, to determine the need for upgrading the base stations, the theory of fuzzy sets is used, with the help of which experts can be attracted to this issue. They will be able to formulate additional fuzzy judgments that help to take into account not only measuring characteristics, but also poorly formalized fuzzy information. To do this, the main indicators of the modernization need have been defined, and fuzzy estimates of the need for modernization for all indicators and a set of indicators reflecting the need for upgrading the base stations have been formulated.


Sign in / Sign up

Export Citation Format

Share Document