Link Prediction Based on Graph Embedding Method in Unweighted Networks

Author(s):  
Chencheng Wu ◽  
Yinzuo Zhou ◽  
Lulu Tan ◽  
Cong Teng
Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1407
Author(s):  
Peng Wang ◽  
Jing Zhou ◽  
Yuzhang Liu ◽  
Xingchen Zhou

Knowledge graph embedding aims to embed entities and relations into low-dimensional vector spaces. Most existing methods only focus on triple facts in knowledge graphs. In addition, models based on translation or distance measurement cannot fully represent complex relations. As well-constructed prior knowledge, entity types can be employed to learn the representations of entities and relations. In this paper, we propose a novel knowledge graph embedding model named TransET, which takes advantage of entity types to learn more semantic features. More specifically, circle convolution based on the embeddings of entity and entity types is utilized to map head entity and tail entity to type-specific representations, then translation-based score function is used to learn the presentation triples. We evaluated our model on real-world datasets with two benchmark tasks of link prediction and triple classification. Experimental results demonstrate that it outperforms state-of-the-art models in most cases.


2021 ◽  
Author(s):  
Shensi Wang ◽  
Kun Fu ◽  
Xian Sun ◽  
Zequn Zhang ◽  
Shuchao Li ◽  
...  

2021 ◽  
Author(s):  
Rogini Runghen ◽  
Daniel B Stouffer ◽  
Giulio Valentino Dalla Riva

Collecting network interaction data is difficult. Non-exhaustive sampling and complex hidden processes often result in an incomplete data set. Thus, identifying potentially present but unobserved interactions is crucial both in understanding the structure of large scale data, and in predicting how previously unseen elements will interact. Recent studies in network analysis have shown that accounting for metadata (such as node attributes) can improve both our understanding of how nodes interact with one another, and the accuracy of link prediction. However, the dimension of the object we need to learn to predict interactions in a network grows quickly with the number of nodes. Therefore, it becomes computationally and conceptually challenging for large networks. Here, we present a new predictive procedure combining a graph embedding method with machine learning techniques to predict interactions on the base of nodes' metadata. Graph embedding methods project the nodes of a network onto a---low dimensional---latent feature space. The position of the nodes in the latent feature space can then be used to predict interactions between nodes. Learning a mapping of the nodes' metadata to their position in a latent feature space corresponds to a classic---and low dimensional---machine learning problem. In our current study we used the Random Dot Product Graph model to estimate the embedding of an observed network, and we tested different neural networks architectures to predict the position of nodes in the latent feature space. Flexible machine learning techniques to map the nodes onto their latent positions allow to account for multivariate and possibly complex nodes' metadata. To illustrate the utility of the proposed procedure, we apply it to a large dataset of tourist visits to destinations across New Zealand. We found that our procedure accurately predicts interactions for both existing nodes and nodes newly added to the network, while being computationally feasible even for very large networks. Overall, our study highlights that by exploiting the properties of a well understood statistical model for complex networks and combining it with standard machine learning techniques, we can simplify the link prediction problem when incorporating multivariate node metadata. Our procedure can be immediately applied to different types of networks, and to a wide variety of data from different systems. As such, both from a network science and data science perspective, our work offers a flexible and generalisable procedure for link prediction.


2023 ◽  
Vol 55 (1) ◽  
pp. 1-37
Author(s):  
Claudio D. T. Barros ◽  
Matheus R. F. Mendonça ◽  
Alex B. Vieira ◽  
Artur Ziviani

Embedding static graphs in low-dimensional vector spaces plays a key role in network analytics and inference, supporting applications like node classification, link prediction, and graph visualization. However, many real-world networks present dynamic behavior, including topological evolution, feature evolution, and diffusion. Therefore, several methods for embedding dynamic graphs have been proposed to learn network representations over time, facing novel challenges, such as time-domain modeling, temporal features to be captured, and the temporal granularity to be embedded. In this survey, we overview dynamic graph embedding, discussing its fundamentals and the recent advances developed so far. We introduce the formal definition of dynamic graph embedding, focusing on the problem setting and introducing a novel taxonomy for dynamic graph embedding input and output. We further explore different dynamic behaviors that may be encompassed by embeddings, classifying by topological evolution, feature evolution, and processes on networks. Afterward, we describe existing techniques and propose a taxonomy for dynamic graph embedding techniques based on algorithmic approaches, from matrix and tensor factorization to deep learning, random walks, and temporal point processes. We also elucidate main applications, including dynamic link prediction, anomaly detection, and diffusion prediction, and we further state some promising research directions in the area.


2020 ◽  
Author(s):  
Quan Do ◽  
Pierre Larmande

AbstractCandidate genes prioritization allows to rank among a large number of genes, those that are strongly associated with a phenotype or a disease. Due to the important amount of data that needs to be integrate and analyse, gene-to-phenotype association is still a challenging task. In this paper, we evaluated a knowledge graph approach combined with embedding methods to overcome these challenges. We first introduced a dataset of rice genes created from several open-access databases. Then, we used the Translating Embedding model and Convolution Knowledge Base model, to vectorize gene information. Finally, we evaluated the results using link prediction performance and vectors representation using some unsupervised learning techniques.


Sign in / Sign up

Export Citation Format

Share Document