Air Pollution Lidar Signals Classification Based on Machine Learning Methods

Author(s):  
Binkun Liu ◽  
Zhenyi Xu ◽  
Yu Kang ◽  
Yang Cao ◽  
Lihong Pei
2020 ◽  
Author(s):  
Peer Nowack ◽  
Lev Konstantinovskiy ◽  
Hannah Gardiner ◽  
John Cant

Abstract. Air pollution is a key public health issue in urban areas worldwide. The development of low-cost air pollution sensors is consequently a major research priority. However, low-cost sensors often fail to attain sufficient measurement performance compared to state-of-the-art measurement stations, and typically require calibration procedures in expensive laboratory settings. As a result, there has been much debate about calibration techniques that could make their performance more reliable, while also developing calibration procedures that can be carried out without access to advanced laboratories. One repeatedly proposed strategy is low-cost sensor calibration through co-location with public measurement stations. The idea is that, using a regression function, the low-cost sensor signals can be calibrated against the station reference signal, to be then deployed separately with performances similar to the original stations. Here we test the idea of using machine learning algorithms for such regression tasks using hourly-averaged co-location data for nitrogen dioxide (NO2) and particulate matter of particle sizes smaller than 10 μm (PM10) at three different locations in the urban area of London, UK. Specifically, we compare the performance of Ridge regression, a linear statistical learning algorithm, to two non-linear algorithms in the form of Random Forest (RF) regression and Gaussian Process regression (GPR). We further benchmark the performance of all three machine learning methods to the more common Multiple Linear Regression (MLR). We obtain very good out-of-sample R2-scores (coefficient of determination) > 0.7, frequently exceeding 0.8, for the machine learning calibrated low-cost sensors. In contrast, the performance of MLR is more dependent on random variations in the sensor hardware and co-located signals, and is also more sensitive to the length of the co-location period. We find that, subject to certain conditions, GPR is typically the best performing method in our calibration setting, followed by Ridge regression and RF regression. However, we also highlight several key limitations of the machine learning methods, which will be crucial to consider in any co-location calibration. In particular, none of the methods is able to extrapolate to pollution levels well outside those encountered at training stage. Ultimately, this is one of the key limiting factors when sensors are deployed away from the co-location site itself. Consequently, we find that the linear Ridge method, which best mitigates such extrapolation effects, is typically performing as good as, or even better, than GPR after sensor re-location. Overall, our results highlight the potential of co-location methods paired with machine learning calibration techniques to reduce costs of air pollution measurements, subject to careful consideration of the co-location training conditions, the choice of calibration variables, and the features of the calibration algorithm.


2020 ◽  
Author(s):  
Juan David Gutiérrez

Abstract Background: Previous authors have evidenced the relationship between air pollution-aerosols and meteorological variables with the occurrence of pneumonia. Forecasting the number of attentions of pneumonia cases may be useful to optimize the allocation of healthcare resources and support public health authorities to implement emergency plans to face an increase in patients. The purpose of this study is to implement four machine-learning methods to forecast the number of attentions of pneumonia cases in the five largest cities of Colombia by using air pollution-aerosols, and meteorological and admission data.Methods: The number of attentions of pneumonia cases in the five most populated Colombian cities was provided by public health authorities between January 2009 and December 2019. Air pollution-aerosols and meteorological data were obtained from remote sensors. Four machine-learning methods were implemented for each city. We selected the machine-learning methods with the best performance in each city and implemented two techniques to identify the most relevant variables in the forecasting developed by the best-performing machine-learning models. Results: According to R2 metric, random forest was the machine-learning method with the best performance for Bogotá, Medellín and Cali; whereas for Barranquilla, the best performance was obtained from the Bayesian adaptive regression trees, and for Cartagena, extreme gradient boosting had the best performance. The most important variables for the forecasting were related to the admission data.Conclusions: The results obtained from this study suggest that machine learning can be used to efficiently forecast the number of attentions of pneumonia cases, and therefore, it can be a useful decision-making tool for public health authorities.


Author(s):  
Zakoldaev D. A., Et. al.

In this paper, we describe an approach for air pollution modeling in the data incompleteness scenarios, when the sensors cover the monitoring area only partially. The fundamental calculus and metrics of using machine learning modeling algorithms are presented. Moreover, the assessing indicators and metrics for machine learning methods performance evaluation are described. Based on the conducted analysis, conclusions on the most appropriate evaluation approaches are made.


2021 ◽  
Vol 14 (8) ◽  
pp. 5637-5655 ◽  
Author(s):  
Peer Nowack ◽  
Lev Konstantinovskiy ◽  
Hannah Gardiner ◽  
John Cant

Abstract. Low-cost air pollution sensors often fail to attain sufficient performance compared with state-of-the-art measurement stations, and they typically require expensive laboratory-based calibration procedures. A repeatedly proposed strategy to overcome these limitations is calibration through co-location with public measurement stations. Here we test the idea of using machine learning algorithms for such calibration tasks using hourly-averaged co-location data for nitrogen dioxide (NO2) and particulate matter of particle sizes smaller than 10 µm (PM10) at three different locations in the urban area of London, UK. We compare the performance of ridge regression, a linear statistical learning algorithm, to two non-linear algorithms in the form of random forest regression (RFR) and Gaussian process regression (GPR). We further benchmark the performance of all three machine learning methods relative to the more common multiple linear regression (MLR). We obtain very good out-of-sample R2 scores (coefficient of determination) >0.7, frequently exceeding 0.8, for the machine learning calibrated low-cost sensors. In contrast, the performance of MLR is more dependent on random variations in the sensor hardware and co-located signals, and it is also more sensitive to the length of the co-location period. We find that, subject to certain conditions, GPR is typically the best-performing method in our calibration setting, followed by ridge regression and RFR. We also highlight several key limitations of the machine learning methods, which will be crucial to consider in any co-location calibration. In particular, all methods are fundamentally limited in how well they can reproduce pollution levels that lie outside those encountered at training stage. We find, however, that the linear ridge regression outperforms the non-linear methods in extrapolation settings. GPR can allow for a small degree of extrapolation, whereas RFR can only predict values within the training range. This algorithm-dependent ability to extrapolate is one of the key limiting factors when the calibrated sensors are deployed away from the co-location site itself. Consequently, we find that ridge regression is often performing as good as or even better than GPR after sensor relocation. Our results highlight the potential of co-location approaches paired with machine learning calibration techniques to reduce costs of air pollution measurements, subject to careful consideration of the co-location training conditions, the choice of calibration variables and the features of the calibration algorithm.


Modelling ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 659-674
Author(s):  
Petra Vidnerová ◽  
Roman Neruda

Precise environmental modelling of pollutants distributions represents a key factor for addresing the issue of urban air pollution. Nowadays, urban air pollution monitoring is primarily carried out by employing sparse networks of spatially distributed fixed stations. The work in this paper aims at improving the situation by utilizing machine learning models to process the outputs of multi-sensor devices that are small, cheap, albeit less reliable, thus a massive urban deployment of those devices is possible. The main contribution of the paper is the design of a mathematical model providing sensor fusion to extract the information and transform it into the desired pollutant concentrations. Multi-sensor outputs are used as input information for a particular machine learning model trained to produce the CO, NO2, and NOx concentration estimates. Several state-of-the-art machine learning methods, including original algorithms proposed by the authors, are utilized in this study: kernel methods, regularization networks, regularization networks with composite kernels, and deep neural networks. All methods are augmented with a proper hyper-parameter search to achieve the optimal performance for each model. All the methods considered achieved vital results, deep neural networks exhibited the best generalization ability, and regularization networks with product kernels achieved the best fitting of the training set.


Sign in / Sign up

Export Citation Format

Share Document