Air gap data analysis of linear motor for urban rail train

Author(s):  
Andong Han ◽  
Sheng Li ◽  
Bufan Liu ◽  
Yulin Mei
IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 142272-142279 ◽  
Author(s):  
Kaer Zhu ◽  
Ping Xun ◽  
Wei Li ◽  
Zhen Li ◽  
Ruochong Zhou

Author(s):  
Carl Trygve Stansberg

Low-frequency pitch motions of a moored semisubmersible in irregular sea states are analyzed. Physical mechanisms and significance to air-gap problems are addressed. Excitation from wave drift and from moorings/risers is primarily considered, Effects from current and wind are also addressed. Related challenges in deepwater model testing of semis with truncated moorings are discussed. Motion and air-gap data from two previously performed model tests are analysed. Catenary moorings in 335m water depth and in 1100m water depth, respectively, are considered. Model scales are 1:55 and 1:150, respectively. Observed slow-drift pitch components are of the same magnitude level as the wave-frequency components. Comparisons to coupled numerical analysis models are made. Wave drift moment coefficients calibrated empirically according to experiments were used, since the original coefficients gave too low results. The final comparisons show good agreement for the 1:55 case. For the 1:150 case, fairly good agreement is found, but some deviations are observed and believed to be due to poorer wave repeatablity. Tests with truncated moorings at half of the two actual depths were also included, for a check of methods for deepwater model tests performed at reduced depths and combine with numerical analysis (hybrid verification). The importance of proper experimental reproduction at reduced depths, of full-depth pitch and air-gap, is addressed. The results show that with the actual truncation designs, reasonable agreements are obtained, but use of the scale 1:150 seems to give too large uncertainties due to the poorer wave repeatability.


2017 ◽  
Vol 25 (04) ◽  
pp. 1750031 ◽  
Author(s):  
V. R. Rajesh ◽  
T. K. Biju

Stirling coolers are becoming more popular in the area of remote sensing and space applications because of their inherent characteristics, viz., long life, high reliability, less weight, etc. In order to have a good onboard performance, the selection of the compressor drive system is crucial. The current development is to replace the conventional crank-driven compressor with a linear motor-driven compressor. Linear motors are simple devices in which axial forces are generated by current flowing in a magnetic field. This paper explores the possibility of employing various combinations of components and their materials for the design of linear drive system. The analysis includes material selection, electromagnetic design and comparison of different configurations in order to meet the stringent operating requirements of the cooler. The compactness of the Stirling cooler is influenced by the available permanent magnet dimensions, the coil winding and the shape of the outer core. Various material combinations were simulated and compared before finalizing the motor geometry. The effect of an increase in magnet height on the flux density of the air gap was studied and the magnetic saturation levels of the inner and outer core were analyzed. The influence of radial air gap on the thrust force was compared for the different configurations. The present study helps in choosing a linear motor with appropriate materials and geometry in the development of a Stirling cooler.


Sign in / Sign up

Export Citation Format

Share Document