High Order Observer with Integral Sliding Mode Controller for Permanent Magnet Synchronous Motor

Author(s):  
Jingyu Liu ◽  
Yingjiang Zhou ◽  
Guo-Ping Jiang ◽  
Cheng Li
Author(s):  
Haris Calgan

Purpose This study aims to design and implement a novel tilt integral sliding mode controller and observer for sensorless speed control of a permanent magnet synchronous motor (PMSM). Design/methodology/approach A control strategy combining the tilt integral derivative (TID) with sliding mode control (SMC) is proposed to determine the tilt integral sliding mode manifold. Using this manifold, tilt integral sliding mode controller (TISMC) and observer (TISMO) are designed. The stabilities are verified by using Lyapunov method. To prove the effectiveness and robustness of proposed methods, sensorless speed control of PMSM is performed for various operating conditions such as constant and variable speed references, load disturbance injection, parameter perturbation, whereas sensor noises are not taken into account. The performance of proposed method is compared with TID controller, proportional integral derivative controller and conventional SMO. Findings Simulation results demonstrate that TISMC and TISMO have better performance in all operating conditions. They are robust against parameter uncertainties and disturbances. TISM based sensorless control of PMSM is well guaranteed with superior performance. Originality/value The proposed method has not been tackled in the literature. By combining TID and SMC, novel tilt integral sliding manifold is presented and used in designing of the controller and observer. It is proven by Lyapunov method that errors converge to zero.


2018 ◽  
Vol 10 (12) ◽  
pp. 168781401881527 ◽  
Author(s):  
Xudong Liu ◽  
Ke Li

A novel speed control method based on sliding mode control and disturbance observer is studied for permanent magnet synchronous motor drives. Different from the conventional speed and current cascade control structure in the field-oriented vector control, the new controller adopts the single-loop control structure, in which the speed and quadrate axes current controllers are combined together. First, a multiple-surface sliding mode controller is designed for the speed control system of permanent magnet synchronous motor. Although the sliding mode controller has the strong robustness for the matched disturbance in the system, it still cannot deal with mismatched disturbance effectively, such as external load disturbance and some parameter variations. Thus, the disturbance observer is introduced to estimate the disturbance in the motor, which is designed by combining the proposed sliding mode controller. Finally, the effectiveness is tested under various conditions by both simulation and experiment. The results show that the designed controller has the fast transient response and robustness under different operating conditions.


Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1680
Author(s):  
Tong Li ◽  
Xudong Liu

Electric vehicle has become the main trend of the development of automobile industry. As a highly symmetrical system, the characteristics of drive motor will have a great impact on the driving comfort. Aiming at the control regulation of permanent magnet synchronous motor (PMSM) drive, a model-free and non-cascade sliding mode control with a fast-reaching law is proposed in this paper. Firstly, the mathematical model of PMSM is constructed as an ultra-local model without considering any motor parameters. Then, to improve the response speed, an integral sliding mode method with a fast reaching law is proposed, and the fast convergence can be realized. The controller system adopts single loop non-cascade control, which greatly simplifies the system structure. In order to further improve the anti-disturbance performance of the system, the dual disturbance observers are used to compensate the disturbance through feed-forward control. The stability of the system is proved by Lyapunov. Finally, the experimental results show that the proposed method has faster convergence speed and stronger anti-disturbance ability.


Sign in / Sign up

Export Citation Format

Share Document