Sliding Mode Control for Integrated Missile Guidance and Control System

Author(s):  
Yu Xiong ◽  
Jianguo Guo ◽  
Jun Zhou
Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2927 ◽  
Author(s):  
Yexing Wang ◽  
Humin Lei ◽  
Jikun Ye ◽  
Xiangwei Bu

This paper investigates the design of a missile seeker servo system combined with a guidance and control system. Firstly, a complete model containing a missile seeker servo system, missile guidance system, and missile control system (SGCS) was creatively proposed. Secondly, a designed high-order tracking differentiator (HTD) was used to estimate states of systems in real time, which guarantees the feasibility of the designed algorithm. To guarantee tracking precision and robustness, backstepping sliding-mode control was adopted. Aiming at the main problem of projectile motion disturbance, an adaptive radial basis function neural network (RBFNN) was proposed to compensate for disturbance. Adaptive RBFNN especially achieves online adjustment of residual error, which promotes estimation precision and eliminates the “chattering phenomenon”. The boundedness of all signals, including estimation error of high-order tracking differentiator, was especially proved via the Lyapunov stability theory, which is more rigorous. Finally, in considered scenarios, line of sight angle (LOSA)-tracking simulations were carried out to verify the tracking performance, and a Monte Carlo miss-distance simulation is presented to validate the effectiveness of the proposed method.


2018 ◽  
Vol 2018 ◽  
pp. 1-15
Author(s):  
Xiang Liu ◽  
Xiaogeng Liang

With the aim of achieving cooperative target interception by using multi-interceptor, a distributed cooperative control algorithm of the multi-interceptor with state coupling is proposed based on the IGC (integrated guidance and control) method. Considering the coupling relationship between the pitch and ya w channels, a state coupling “leader” IGC model is established, an FTDO (finite-time disturbance observer) is designed for estimating the unknown interference of the model, and the “leader” controller is designed according to the adaptive dynamic surface sliding-mode control law. Secondly, the cooperative control strategy of the multi-interceptor is designed with the “leader-follower” distributed network mode to obtain the speed in the three directions of the interceptor in air and transform them to the general flight speed, trajectory inclination angle, and trajectory deflection instruction by using the transformational relation of kinematics. Finally, the “follower” controller is designed with the FTDO and dynamic surface sliding-mode control. The designed multi-interceptor distributed cooperative IGC algorithm with state coupling has good stability according to the simulation results of two different communication topologies.


Sign in / Sign up

Export Citation Format

Share Document