scholarly journals Inferring Software Composition and Credentials of Embedded Devices from Partial Knowledge

Author(s):  
Pierre-Marie Junges ◽  
Jerome Francois ◽  
Olivier Festor
2005 ◽  
Vol 40 (7) ◽  
pp. 230-238 ◽  
Author(s):  
Paul Griffin ◽  
Witawas Srisa-an ◽  
J. Morris Chang

2021 ◽  
Vol 54 (2) ◽  
pp. 1-42
Author(s):  
Abdullah Qasem ◽  
Paria Shirani ◽  
Mourad Debbabi ◽  
Lingyu Wang ◽  
Bernard Lebel ◽  
...  

In the era of the internet of things (IoT), software-enabled inter-connected devices are of paramount importance. The embedded systems are very frequently used in both security and privacy-sensitive applications. However, the underlying software (a.k.a. firmware) very often suffers from a wide range of security vulnerabilities, mainly due to their outdated systems or reusing existing vulnerable libraries; which is evident by the surprising rise in the number of attacks against embedded systems. Therefore, to protect those embedded systems, detecting the presence of vulnerabilities in the large pool of embedded devices and their firmware plays a vital role. To this end, there exist several approaches to identify and trigger potential vulnerabilities within deployed embedded systems firmware. In this survey, we provide a comprehensive review of the state-of-the-art proposals, which detect vulnerabilities in embedded systems and firmware images by employing various analysis techniques, including static analysis, dynamic analysis, symbolic execution, and hybrid approaches. Furthermore, we perform both quantitative and qualitative comparisons among the surveyed approaches. Moreover, we devise taxonomies based on the applications of those approaches, the features used in the literature, and the type of the analysis. Finally, we identify the unresolved challenges and discuss possible future directions in this field of research.


Author(s):  
Poppy M. Jeffries ◽  
Samantha C. Patrick ◽  
Jonathan R. Potts

AbstractMany animal populations include a diversity of personalities, and these personalities are often linked to foraging strategy. However, it is not always clear why populations should evolve to have this diversity. Indeed, optimal foraging theory typically seeks out a single optimal strategy for individuals in a population. So why do we, in fact, see a variety of strategies existing in a single population? Here, we aim to provide insight into this conundrum by modelling the particular case of foraging seabirds, that forage on patchy prey. These seabirds have only partial knowledge of their environment: they do not know exactly where the next patch will emerge, but they may have some understanding of which locations are more likely to lead to patch emergence than others. Many existing optimal foraging studies assume either complete knowledge (e.g. Marginal Value Theorem) or no knowledge (e.g. Lévy Flight Hypothesis), but here we construct a new modelling approach which incorporates partial knowledge. In our model, different foraging strategies are favoured by different birds along the bold-shy personality continuum, so we can assess the optimality of a personality type. We show that it is optimal to be shy (resp. bold) when living in a population of bold (resp. shy) birds. This observation gives a plausible mechanism behind the emergence of diverse personalities. We also show that environmental degradation is likely to favour shyer birds and cause a decrease in diversity of personality over time.


Sensors ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 275
Author(s):  
Ruben Panero Martinez ◽  
Ionut Schiopu ◽  
Bruno Cornelis ◽  
Adrian Munteanu

The paper proposes a novel instance segmentation method for traffic videos devised for deployment on real-time embedded devices. A novel neural network architecture is proposed using a multi-resolution feature extraction backbone and improved network designs for the object detection and instance segmentation branches. A novel post-processing method is introduced to ensure a reduced rate of false detection by evaluating the quality of the output masks. An improved network training procedure is proposed based on a novel label assignment algorithm. An ablation study on speed-vs.-performance trade-off further modifies the two branches and replaces the conventional ResNet-based performance-oriented backbone with a lightweight speed-oriented design. The proposed architectural variations achieve real-time performance when deployed on embedded devices. The experimental results demonstrate that the proposed instance segmentation method for traffic videos outperforms the you only look at coefficients algorithm, the state-of-the-art real-time instance segmentation method. The proposed architecture achieves qualitative results with 31.57 average precision on the COCO dataset, while its speed-oriented variations achieve speeds of up to 66.25 frames per second on the Jetson AGX Xavier module.


Sign in / Sign up

Export Citation Format

Share Document