Experimental validation of a nonlinear quadrotor controller with wind disturbance rejection

Author(s):  
David Cabecinhas ◽  
Rita Cunha ◽  
Carlos Silvestre
2013 ◽  
Vol 21 (6) ◽  
pp. 1568-1575
Author(s):  
孙明玮 SUN Ming-wei ◽  
邱德敏 QIU De-min ◽  
王永坤 WANG Yong-kun ◽  
陈增强 CHEN Zeng-qiang

Robotics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 23
Author(s):  
Adam Williams ◽  
Bijo Sebastian ◽  
Pinhas Ben-Tzvi

In this paper, the design and control of a robotic device intended to stabilize the head and neck of a trauma patient during transport are presented. When transporting a patient who has suffered a traumatic head injury, the first action performed by paramedics is typically to restrain and stabilize the head and cervical spine of a patient. The proposed device would drastically reduce the time required to perform this action while also freeing a first responder to perform other possibly lifesaving actions. The applications for robotic casualty extraction are additionally explored. The design and construction are described, followed by control simulations demonstrating the improved behavior of the chosen controller paradigm, linear active disturbance rejection control (LADRC). Finally, experimental validation is presented, followed by future work and directions for the research.


2019 ◽  
Vol 11 ◽  
pp. 175682931986964
Author(s):  
Hang Zhang ◽  
Bifeng Song ◽  
Haifeng Wang ◽  
Jianlin Xuan

The wind disturbance rejection capability of a quadrotor fixed-wing hybrid unmanned aerial vehicle (QFHUAV) in the quadrotor mode is an important factor restricting its large-scale applications. In this paper, based on static equilibrium analysis of the quadrotor mode of a QFHUAV with a wind disturbance, a method for analyzing and evaluating the wind disturbance rejection capability of the QFHUAV in the quadrotor mode is presented. The six degrees-of-freedom (6-DOF) static equilibrium equations of the QFHUAV are established in headwind and crosswind situations. The maximum wind velocity that satisfies the equilibrium equations under the constraints of the maximum thrust and torque of the quadrotor propulsion system is used to determine the wind disturbance rejection capability of the QFHUAV in the quadrotor mode. A QFHUAV with a twin-boom is used as an example to analyze and evaluate its wind disturbance rejection capability in the quadrotor mode. The configuration parameters, quadrotor propulsion system parameters, and aerodynamic parameters affecting the wind disturbance rejection capability of the QFHUAV in the quadrotor mode are presented, discussed, and explained. The yawing moment from the wind disturbance is the main factor threatening the safe flight of the QFHUAV in the quadrotor mode. The rotor disk angle, the maximum thrust of the quadrotor propulsion system, and the moment arms of the components of the quadrotor propulsion system thrust are the main factors affecting the wind disturbance rejection capability of the QFHUAV in the quadrotor mode. Increasing these parameter values is an effective approach to improve the wind disturbance rejection capability of the QFHUAV in the quadrotor mode. From the perspective of wind disturbance rejection capability, tailless and X-type layouts are better choices for QFHUAVs. The correctness of results obtained by the proposed method is verified by two flight test schemes.


Sign in / Sign up

Export Citation Format

Share Document