Requirements on Super-Short-Term Wind Speed Predictions for Model Predictive Wind Turbine Control

Author(s):  
Sebastian Dickler ◽  
Marcus Wiens ◽  
Frederik Thonnissen ◽  
Uwe Jassmann ◽  
Dirk Abel
Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 523 ◽  
Author(s):  
Bian Ma ◽  
Jing Teng ◽  
Huixian Zhu ◽  
Rong Zhou ◽  
Yun Ju ◽  
...  

The wind power industry continues to experience rapid growth worldwide. However, the fluctuations in wind speed and direction complicate the wind turbine control process and hinder the integration of wind power into the electrical grid. To maximize wind utilization, we propose to precisely measure the wind in a three-dimensional (3D) space, thus facilitating the process of wind turbine control. Natural wind is regarded as a 3D vector, whose direction and magnitude correspond to the wind’s direction and speed. A semi-conical ultrasonic sensor array is proposed to simultaneously measure the wind speed and direction in a 3D space. As the ultrasonic signal transmitted between the sensors is influenced by the wind and environment noise, a Multiple Signal Classification algorithm is adopted to estimate the wind information from the received signal. The estimate’s accuracy is evaluated in terms of root mean square error and mean absolute error. The robustness of the proposed method is evaluated by the type A evaluation of standard uncertainty under a varying signal-to-noise ratio. Simulation results validate the accuracy and anti-noise performance of the proposed method, whose estimated wind speed and direction errors converge to zero when the SNR is over 15 dB.


2017 ◽  
Vol 2 (3) ◽  
pp. 356-360
Author(s):  
Mehrdad Gholami ◽  
Om-Kolsoom Shahryari

This paper presents a new simple control strategy for direct driven PMSG wind turbines, using no wind speed sensor. There are several strategies for wind turbine control. Operation of different strategies in terms of power smoothing is compared. New strategy is proposed to have more power smoothing. Performance of the proposed strategy is evaluated by MATLAB/ Simulink simulations and its validity and effectiveness are verified.


2018 ◽  
Vol 10 (11) ◽  
pp. 1701 ◽  
Author(s):  
Laura Valldecabres ◽  
Nicolai Nygaard ◽  
Luis Vera-Tudela ◽  
Lueder von Bremen ◽  
Martin Kühn

Very short-term forecasts of wind power provide electricity market participants with extremely valuable information, especially in power systems with high penetration of wind energy. In very short-term horizons, statistical methods based on historical data are frequently used. This paper explores the use of dual-Doppler radar observations of wind speed and direction to derive five-minute ahead deterministic and probabilistic forecasts of wind power. An advection-based technique is introduced, which estimates the predictive densities of wind speed at the target wind turbine. In a case study, the proposed methodology is used to forecast the power generated by seven turbines in the North Sea with a temporal resolution of one minute. The radar-based forecast outperforms the persistence and climatology benchmarks in terms of overall forecasting skill. Results indicate that when a large spatial coverage of the inflow of the wind turbine is available, the proposed methodology is also able to generate reliable density forecasts. Future perspectives on the application of Doppler radar observations for very short-term wind power forecasting are discussed in this paper.


2015 ◽  
Vol 2015 (0) ◽  
pp. _J0530406--_J0530406-
Author(s):  
Yusuke NOJIMA ◽  
Hiroaki FUJIO ◽  
Nobutoshi NISHIO ◽  
Chuichi ARAKAWA ◽  
Makoto IIDA

2012 ◽  
Vol 16 (suppl. 2) ◽  
pp. 483-491 ◽  
Author(s):  
Predrag Zivkovic ◽  
Vlastimir Nikolic ◽  
Gradimir Ilic ◽  
Zarko Cojbasic ◽  
Ivan Ciric

In this paper, a fuzzy controller is proposed for wind turbine control. A model is analyzed and combined with a stochastic wind model for simulation purposes. Based on the model, a fuzzy control of wind turbine is developed. Wind turbine control loop provides the reference inputs for the electric generator control loop in order to make the system run with maximum power. Since the wind speed involved in the aerodynamic equations is a stochastic variable, whose effective value cannot be measured directly, a wind speed estimator is also proposed.


Author(s):  
Gokhan Erdemir ◽  
Aydin Tarik Zengin ◽  
Tahir Cetin Akinci

It is very important to accurately detect wind direction and speed for wind energy that is one of the essential sustainable energy sources. Studies on the wind speed forecasting are generally carried out for long-term predictions. One of the main reasons for the long-term forecasts is the correct planning of the area where the wind turbine will be built due to the high investment costs and long-term returns. Besides that, short-term forecasting is another important point for the efficient use of wind turbines. In addition to estimating only average values, making instant and dynamic short-term forecasts are necessary to control wind turbines. In this study, short-term forecasting of the changes in wind speed between 1-20 minutes using deep learning was performed. Wind speed data was obtained instantaneously from the feedback of the emulated wind turbine's generator. These dynamically changing data was used as an input of the deep learning algorithm. Each new data from the generator was used as both test and training input in the proposed approach. In this way, the model accuracy and enhancement were provided simultaneously. The proposed approach was turned into a modular independent integrated system to work in various wind turbine applications. It was observed that the system can predict wind speed dynamically with around 3% error in the applications in the test setup applications.


Sign in / Sign up

Export Citation Format

Share Document