MPPT System Using Incremental Conductance for Solar Cell in Normal and Partial Shading Conditions

Author(s):  
Pramudya Widyantoro ◽  
Rummi Sirait ◽  
Akhmad Musafa
2014 ◽  
Vol 622 ◽  
pp. 141-145
Author(s):  
Govindaraju Rohini ◽  
V. Jamuna ◽  
D. Priyadarsini

This paper discuss about the effect of partial shading on photovoltaic array and driving the dc-dc boost converter to track maximum power point (MPP ) by incremental conductance (INC) MPPT algorithm. The temperature, irradiance, shading and array configuration will greatly affect the Photovoltaic performance. The shading effect on photovoltaic panel are caused by passing clouds ,neighbouring trees, neighbouring buildings ,towers .The PV characteristic of Photovoltaic panel get more complex under partial shading condition. The P-V and I-V characteristic under nonuniform insolation are simulated in Matlab based on solar irradiance and cell temperature. The design and analysis are made simple and easy through Simscape package.


2020 ◽  
Vol 12 (24) ◽  
pp. 10310 ◽  
Author(s):  
Abdulaziz Almutairi ◽  
Ahmed G. Abo-Khalil ◽  
Khairy Sayed ◽  
Naif Albagami

The disadvantage of photovoltaic (PV) power generation is that output power decreases due to the presence of clouds or shade. Moreover, it can only be used when the sun is shining. Consequently, there is a need for further active research into the maximum power point tracking (MPPT) technique, which can maximize the power of solar cells. When the solar cell array is partially shaded due to the influence of clouds or buildings, the solar cell characteristic has a number of local maximum power points (LMPPs). Conventional MPPT techniques do not follow the actual maximum power point, namely, the global maximum power point (GMPP), but stay in the LMPP. Therefore, an analysis of the occurrence of multiple LMPPs due to partial shading, as well as a study on the MPPT technique that can trace GMPP, is needed. In order to overcome this obstacle, the grey wolf optimization (GWO) method is proposed in order to track the global maximum power point and to maximize the energy extraction of the PV system. In addition, opposition-based learning is integrated with the GWO to accelerate the MPPT search process and to reduce convergence time. Simultaneously, the DC link voltage is controlled to reduce sudden variations in voltage in the event of transients of solar radiation and/or temperature. Experimental tests are presented to validate the effectiveness of the proposed MPPT method during uniform irradiance and partial shading conditions. The proposed method is compared with the perturbation and observation method.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Saad Motahhir ◽  
Abdelaziz El Ghzizal ◽  
Souad Sebti ◽  
Aziz Derouich

The first objective of this work is to determine some of the performance parameters characterizing the behavior of a particular photovoltaic (PV) panels that are not normally provided in the manufacturers’ specifications. These provide the basis for developing a simple model for the electrical behavior of the PV panel. Next, using this model, the effects of varying solar irradiation, temperature, series and shunt resistances, and partial shading on the output of the PV panel are presented. In addition, the PV panel model is used to configure a large photovoltaic array. Next, a boost converter for the PV panel is designed. This converter is put between the panel and the load in order to control it by means of a maximum power point tracking (MPPT) controller. The MPPT used is based on incremental conductance (INC), and it is demonstrated here that this technique does not respond accurately when solar irradiation is increased. To investigate this, a modified incremental conductance technique is presented in this paper. It is shown that this system does respond accurately and reduces the steady-state oscillations when solar irradiation is increased. Finally, simulations of the conventional and modified algorithm are compared, and the results show that the modified algorithm provides an accurate response to a sudden increase in solar irradiation.


2021 ◽  
Vol 219 ◽  
pp. 110811
Author(s):  
Robert Witteck ◽  
Susanne Blankemeyer ◽  
Michael Siebert ◽  
Marc Köntges ◽  
Henning Schulte-Huxel

2014 ◽  
Vol 47 (47) ◽  
pp. 475503 ◽  
Author(s):  
Bin Pan ◽  
Jian Weng ◽  
Shuanghong Chen ◽  
Yang Huang ◽  
Songyuan Dai

Author(s):  
SRI UTAMI ◽  
SITI SAODAH ◽  
APIP PUDIN

ABSTRAKPanel surya menghasilkan energi sesuai dengan kondisi cuaca yang diterimanya. Untuk menaikkan energi yang dihasilkan sel surya sesuai dengan kondisi optimalnya digunakanlah Maximum Power Point Tracker (MPPT) yang dapat menggunakan algoritma berbeda. Penelitian ini menggunakan algoritma Incremental Conductance (keluarga Hill Climbing) yang dibangun pada sistem dengan menggunakan Arduino Uno R3. Mikrokontroller mengkondisikan DC-DC buck converter untuk mengekstraksi daya keluaran sel surya serta menyesuaikannya untuk penyimpanan. MPPT meregulasi pulse width modulation (PWM) untuk mengatur sinyal pada konverter hingga kondisi : dI/dV + I/V = 0 terpenuhi. Sistem yang dibangun dapat dilihat performansinya di dalam ruangan (menggunakan artificial light) maupun di luar ruangan (menggunakan iradiasi matahari). Validasi sistem menggunakan metode ini pada MPPT-nya memberikan performansi yang lebih baik. Sistem konvensional menghasilkan daya 0.60W dengan irradisai 432 W/m2 dan beban 10 Ω. Dengan beban yang sama sistem MPPT menggunakan algoritma yang diusulkan memberikan daya keluaran sebesar 17.61W dengan iradiasi yang samaKata kunci: sel surya, MPPT, incremental conductance ABSTRACTPhotovoltaic generates energy according to the received weather condition. To increase the energy produced by solar cell corresponding with optimum condition, system used Maximum Power Point Tracker (MPPT) that can use several different algorithms. This research proposed Incremental Conductance built on the system using Arduino Uno R3. The controller determined DC-DC buck converter condition to extract solar cell output and adjust for storage purposes . MPPT regulated pulse width modulation (PWM) to determine signal in DC-DC converter until condition:dI/dV+I/V=0 is fulfilled. Performances of the system can be seen in indoor (using artificial light) or outdoor (using solar irradiation). System validation using proposed method provided better performance. The conventional system produced 0.60W with 432 W/m2 irradiation and 10 Ω load. Using same load and irradiation, system with Incremental Conductance provided output 17.61WKeywords: solar cell, MPPT, incremental conductance


Sign in / Sign up

Export Citation Format

Share Document