scholarly journals Partial shading of one solar cell in a photovoltaic module with 3-terminal cell interconnection

2021 ◽  
Vol 219 ◽  
pp. 110811
Author(s):  
Robert Witteck ◽  
Susanne Blankemeyer ◽  
Michael Siebert ◽  
Marc Köntges ◽  
Henning Schulte-Huxel
2015 ◽  
Vol 785 ◽  
pp. 220-224 ◽  
Author(s):  
Jin Chuan Teo ◽  
Rodney H.G. Tan ◽  
V.H. Mok

This paper presents the investigation of partial shading characteristics of mono-crystalline and poly-crystalline photovoltaic module connected in series. Simulink models are developed to assist the investigation to determine the ideality factor for mono-crystalline and poly-crystalline photovoltaic module. Commercially available mono-crystalline and poly-crystalline photovoltaic module are used to extract measurable parameters for the model to study the behaviour of I-V curve. Measurements have been conducted for the investigation includingmono-crystalline only, poly-crystalline only, both unshaded, mono-crystalline shaded and poly-crystalline shaded. This paper contributes to the understanding of partial shading characteristics of different materials presence in photovoltaic string.


2020 ◽  
Vol 510 ◽  
pp. 145420 ◽  
Author(s):  
Wonje Oh ◽  
Jisu Park ◽  
Chaehwan Jeong ◽  
Jinhong Park ◽  
Junsin Yi ◽  
...  

Author(s):  
Kamaruzzaman Sopian ◽  
Ali H A Alwaeli ◽  
Hussein A Kazem

The solar irradiance received by the solar cell is partially lost as heat, which carries negative effect on its voltage and in turn, its generated power. This trapped heat within the photovoltaic module is considered waste energy. Hence, techniques to extract this heat to utilize it for thermal loads, such as water heating or drying, are presented throughout the literature. Most prominent technique is the hybrid photovoltaic thermal collector. This device will serve in cooling the solar cell and hence improving its efficiency during operation. Meanwhile, it will absorb the heat and transfer it into a working fluid. The fluid could be utilized directly or indirectly for thermal loads in moderate and low temperature range applications. The type of working fluid highly affects the photovoltaic thermal performance and its physical design. This paper tracks the development of working fluids and analyzes highly efficient photovoltaic thermals from the literature. Moreover, a lengthy discussion on state-of-the-art photovoltaic thermal systems is presented and recommendations for future works are listed as well.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1992 ◽  
Author(s):  
Ewa Klugmann-Radziemska

The amount of solar radiation reaching the front cover of a photovoltaic module is crucial for its performance. A number of factors must be taken into account at the design stage of the solar installation, which will ensure maximum utilization of the potential arising from the location. During the operation of a photovoltaic installation, it is necessary to limit the shading of the modules caused by both dust and shadowing by trees or other objects. The article presents an analysis of the impact of the radiation reaching the surface of the radiation module on the efficiency obtained. Each of the analyzed aspects is important for obtaining the greatest amount of energy in specific geographical conditions. Modules contaminated by settling dust will be less efficient than those without deposits. The results of experimental studies of this effect are presented, depending on the amount of impurities, including their origins and morphologies. In practice, it is impossible to completely eliminate shadowing caused by trees, uneven terrain, other buildings, chimneys, or satellite dishes, and so on, which limits the energy of solar radiation reaching the modules. An analysis of partial shading for the generated power was also carried out. An important way for maximizing the incoming radiation is the correct positioning of the modules relative to the sun. It is considered optimal to position the modules relative to the light source, that is, the sun, so that the rays fall perpendicular to the surfaces of the modules. Any deviation in the direction of the rays results in a loss in the form of a decrease in the available power of the module. The most beneficial option would be to use sun-tracking systems, but they represent an additional investment cost, and their installations require additional space and maintenance. Therefore, the principle was adopted that stationary systems should be oriented to the south, using the optimal angle of inclination of the module surface appropriate for the location. This article presents the dependence of the decrease in obtained power on the angle of deviation from the optimal one.


2020 ◽  
Vol 12 (24) ◽  
pp. 10310 ◽  
Author(s):  
Abdulaziz Almutairi ◽  
Ahmed G. Abo-Khalil ◽  
Khairy Sayed ◽  
Naif Albagami

The disadvantage of photovoltaic (PV) power generation is that output power decreases due to the presence of clouds or shade. Moreover, it can only be used when the sun is shining. Consequently, there is a need for further active research into the maximum power point tracking (MPPT) technique, which can maximize the power of solar cells. When the solar cell array is partially shaded due to the influence of clouds or buildings, the solar cell characteristic has a number of local maximum power points (LMPPs). Conventional MPPT techniques do not follow the actual maximum power point, namely, the global maximum power point (GMPP), but stay in the LMPP. Therefore, an analysis of the occurrence of multiple LMPPs due to partial shading, as well as a study on the MPPT technique that can trace GMPP, is needed. In order to overcome this obstacle, the grey wolf optimization (GWO) method is proposed in order to track the global maximum power point and to maximize the energy extraction of the PV system. In addition, opposition-based learning is integrated with the GWO to accelerate the MPPT search process and to reduce convergence time. Simultaneously, the DC link voltage is controlled to reduce sudden variations in voltage in the event of transients of solar radiation and/or temperature. Experimental tests are presented to validate the effectiveness of the proposed MPPT method during uniform irradiance and partial shading conditions. The proposed method is compared with the perturbation and observation method.


Sign in / Sign up

Export Citation Format

Share Document