In Silico Cardiac Model to Evaluate Myocardial Ischemia effect on Hemodynamic Parameters

Author(s):  
Oishee Mazumder ◽  
Dibyendu Roy ◽  
Aniruddha Sinha
2020 ◽  
Author(s):  
Ronen Goldkorn ◽  
Alexey Naimushin ◽  
Eli Rozen ◽  
Dov Freimark

Abstract Background: While single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) is a well-established noninvasive procedure for the evaluation of patients with coronary artery disease (CAD), it is unable to detect the presence of, or underestimates the extent of CAD in certain patients. We aimed to show that a bio-impedance device can detect early post-stress changes in several hemodynamic parameters, thereby serving as a potential marker for the presence of significant ischemia. Methods: Prospectively enrolled patients, referred to our Medical Center for clinically-indicated MPI, underwent testing using a Non-Invasive Cardiac System (NICaS) before and immediately after exercise. The differences between rest and stress hemodynamic parameters were compared with the severity and extent of myocardial ischemia by MPI. The study included 198 patients; mean age was 62 years, 26% were women, 54% had hypertension, and 29% diabetes mellitus. Of them, 188 patients had ≤10%, and 10 had >10% of myocardial ischemia. Results: In the first group, there was a significantly greater increase in post-exercise stroke index, stroke work index, cardiac index and cardiac power index (19.2%, 29.1%, 90.5% and 107%, respectively) compared with the second group (-2.7%, 3.8%, 43.7% and 53.5%, respectively), as well as a significantly greater decrease in total peripheral resistance index (-38.7% compared with -16.3%), with corresponding p values of 0.015, 0.017, 0.040, 0.016, and <0.001, respectively. Conclusions: Our data suggest that immediate post-stress changes in several hemodynamic parameters, detected by the NICaS, can be used as an important adjunct to SPECT MPI for the early detection of myocardial ischemia.


2021 ◽  
Vol 8 ◽  
Author(s):  
Sofia Morra ◽  
Lorenzo Pitisci ◽  
Fuhong Su ◽  
Amin Hossein ◽  
Jérémy Rabineau ◽  
...  

Introduction: Seismocardiography (SCG) records cardiac and blood-induced motions transmitted to the chest surface as vibratory phenomena. Evidences demonstrate that acute myocardial ischemia (AMI) profoundly affects the SCG signals. Multidimensional SCG records cardiac vibrations in linear and rotational dimensions, and scalar parameters of kinetic energy can be computed. We speculate that AMI and revascularization profoundly modify cardiac kinetic energy as recorded by SCG.Methods: Under general anesthesia, 21 swine underwent 90 min of myocardial ischemia induced by percutaneous sub-occlusion of the proximal left anterior descending (LAD) coronary artery and subsequent revascularization. Invasive hemodynamic parameters were continuously recorded. SCG was recorded during baseline, immediately and 80 min after LAD sub-occlusion, and immediately and 60 min after LAD reperfusion. iK was automatically computed for each cardiac cycle (iKCC) in linear (iKLin) and rotational (iKRot) dimensions. iK was calculated as well during systole and diastole (iKSys and iKDia, respectively). Echocardiography was performed at baseline and after revascularization, and the left ventricle ejection fraction (LVEF) along with regional left ventricle (LV) wall abnormalities were evaluated.Results: Upon LAD sub-occlusion, 77% of STEMI and 24% of NSTEMI were observed. Compared to baseline, troponins increased from 13.0 (6.5; 21.3) ng/dl to 170.5 (102.5; 475.0) ng/dl, and LVEF dropped from 65.0 ± 0.0 to 30.6 ± 5.7% at the end of revascularization (both p &lt; 0.0001). Regional LV wall abnormalities were observed as follows: anterior MI, 17.6% (three out of 17); septal MI, 5.8% (one out of 17); antero-septal MI, 47.1% (eight out of 17); and infero-septal MI, 29.4% (five out of 17). In the linear dimension, iKLinCC, iKLinSys, and iKLinDia dropped by 43, 52, and 53%, respectively (p &lt; 0.0001, p &lt; 0.0001, and p = 0.03, respectively) from baseline to the end of reperfusion. In the rotational dimension, iKRotCC and iKRotSys dropped by 30 and 36%, respectively (p = 0.0006 and p &lt; 0.0001, respectively), but iKRotDia did not change (p = 0.41). All the hemodynamic parameters, except the pulmonary artery pulse pressure, were significantly correlated with the parameters of iK, except for the diastolic component.Conclusions: In this very context of experimental AMI with acute LV regional dysfunction and no concomitant AMI-related heart valve disease, linear and rotational iK parameters, in particular, systolic ones, provide reliable information on LV contractile dysfunction and its effects on the downstream circulation. Multidimensional SCG may provide information on the cardiac contractile status expressed in terms of iK during AMI and reperfusion. This automatic system may empower health care providers and patients to remotely monitor cardiovascular status in the near future.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247921
Author(s):  
Dibyendu Roy ◽  
Oishee Mazumder ◽  
Aniruddha Sinha ◽  
Sundeep Khandelwal

Valvular heart diseases are a prevalent cause of cardiovascular morbidity and mortality worldwide, affecting a wide spectrum of the population. In-silico modeling of the cardiovascular system has recently gained recognition as a useful tool in cardiovascular research and clinical applications. Here, we present an in-silico cardiac computational model to analyze the effect and severity of valvular disease on general hemodynamic parameters. We propose a multimodal and multiscale cardiovascular model to simulate and understand the progression of valvular disease associated with the mitral valve. The developed model integrates cardiac electrophysiology with hemodynamic modeling, thus giving a broader and holistic understanding of the effect of disease progression on various parameters like ejection fraction, cardiac output, blood pressure, etc., to assess the severity of mitral valve disorders, naming Mitral Stenosis and Mitral Regurgitation. The model mimics an adult cardiovascular system, comprising a four-chambered heart with systemic, pulmonic circulation. The simulation of the model output comprises regulated pressure, volume, and flow for each heart chamber, valve dynamics, and Photoplethysmogram signal for normal physiological as well as pathological conditions due to mitral valve disorders. The generated physiological parameters are in agreement with published data. Additionally, we have related the simulated left atrium and ventricle dimensions, with the enlargement and hypertrophy in the cardiac chambers of patients with mitral valve disorders, using their Electrocardiogram available in Physionet PTBI dataset. The model also helps to create ‘what if’ scenarios and relevant analysis to study the effect in different hemodynamic parameters for stress or exercise like conditions.


2020 ◽  
Author(s):  
Ronen Goldkorn ◽  
Alexey Naimushin ◽  
Eli Rozen ◽  
Dov Freimark

Abstract Background While single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) is a well-established noninvasive procedure for the evaluation of patients with coronary artery disease (CAD), it is unable to detect the presence of, or underestimates the extent of CAD in certain patients. We aimed to show that a bio-impedance device can detect early post-stress changes in several hemodynamic parameters, thereby serving as a potential marker for the presence of significant ischemia. Methods Prospectively enrolled patients, referred to our Medical Center for clinically-indicated MPI, underwent testing using a Non-Invasive Cardiac System (NICaS) before and immediately after exercise. The differences between rest and stress hemodynamic parameters were compared with the severity and extent of myocardial ischemia by MPI. The study included 198 patients; mean age was 62 years, 26% were women, 54% had hypertension, and 29% diabetes mellitus. Of them, 188 patients had ≤ 10%, and 10 had > 10% of myocardial ischemia. Results In the first group, there was a significantly greater increase in post-exercise stroke index, stroke work index, cardiac index and cardiac power index (19.2%, 29.1%, 90.5% and 107%, respectively) compared with the second group (-2.7%, 3.8%, 43.7% and 53.5%, respectively), as well as a significantly greater decrease in total peripheral resistance index (-38.7% compared with − 16.3%), with corresponding p values of 0.015, 0.017, 0.040, 0.016, and < 0.001, respectively. Conclusions Our data suggest that immediate post-stress changes in several hemodynamic parameters, detected by the NICaS, can be used as an important adjunct to SPECT MPI for the early detection of myocardial ischemia.


2020 ◽  
Vol 21 (4) ◽  
pp. 1415 ◽  
Author(s):  
Sajad Jeddi ◽  
Sevda Gheibi ◽  
Khosrow Kashfi ◽  
Mattias Carlström ◽  
Asghar Ghasemi

Decreased circulating levels of hydrogen sulfide (H2S) are associated with higher mortality following myocardial ischemia. This study aimed at determining the long-term dose-dependent effects of sodium hydrosulfide (NaSH) administration on myocardial ischemia-reperfusion (IR) injury. Male rats were divided into control and NaSH groups that were treated for 9 weeks with daily intraperitoneal injections of normal saline or NaSH (0.28, 0.56, 1.6, 2.8, and 5.6 mg/kg), respectively. At the end of the study, hearts from all rats were isolated and hemodynamic parameters were recorded during baseline and following IR. In isolated hearts, infarct size, oxidative stress indices as well as mRNA expression of H2S-, nitric oxide (NO)-producing enzymes, and inflammatory markers were measured. In heart tissue following IR, low doses of NaSH (0.28 and 0.56 mg/kg) had no effect, whereas an intermediate dose (1.6 mg/kg), improved recovery of hemodynamic parameters, decreased infarct size, and decreased oxidative stress. It also increased expression of cystathionine γ-lyase (CSE), Raf kinase inhibitor protein (RKIP), endothelial NO synthase (eNOS), and neuronal NOS (nNOS), as well as decreased expression of inducible NOS (iNOS) and nuclear factor kappa-B (NF-κB). At the high dose of 5.6 mg/kg, NaSH administration was associated with worse recovery of hemodynamic parameters and increased infarct size as well as increased oxidative stress. This dose also decreased expression of CSE, RKIP, and eNOS and increased expression of iNOS and NF-κB. In conclusion, chronic treatment with NaSH has a U-shaped concentration effect on IR injury in heart tissue. An intermediate dose was associated with higher CSE-derived H2S, lower iNOS-derived NO, lower oxidative stress, and inflammation in heart tissue following IR.


2020 ◽  
Vol 20 (03) ◽  
pp. 2050017
Author(s):  
YUE FENG ◽  
BOYAN MAO ◽  
BAO LI ◽  
JIAN LIU ◽  
JINCHENG LIU ◽  
...  

Background: The fractional flow reserve (FFR) is the gold standard used to diagnose whether coronary stenosis triggers myocardial ischemia. Myocardial ischemia is not only related to the degree of coronary artery disease but also to hemodynamic parameters such as mean arterial pressure, flow, and so on. This paper will explore the effects of hemodynamic parameters on FFR. Methods: Construct an ideal vascular model of moderately stenosis lesions (40–70%) with different hemodynamic environments. A pressure waveform was set as the inlet boundary, a microcirculation resistance in the hyperemia state was set as the outlet boundary, and different hemodynamic environments were constructed by changing the mean arterial pressure and flow at rest. The microcirculation resistance in the resting state was determined by the mean arterial pressure and flow, and the microcirculation resistance in the hyperemia state was 0.24 times than in the resting state. Results:Flow at rest was found to have the greatest impact on FFR, followed by arterial pressure. Both a decrease in flow and an increase in mean arterial pressure caused an increase in the FFR value. Conclusion:Based on the degree of stenosis of the diseased blood vessel, systolic pressure, diastolic blood pressure, and blood flow through the diseased blood vessel in the resting state, a preliminary judgment can be directly made as to whether the stenosis causes myocardial ischemia.


1994 ◽  
Vol 58 (4) ◽  
pp. 227-237 ◽  
Author(s):  
JUNSHI YOSHIDA ◽  
MITSUHIRO YOKOTA ◽  
TAKASHI MIYAHARA ◽  
KEIKO MATSUBARA ◽  
TOSHIKAZU SOBUE ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document