scholarly journals Worst-case residual clipping noise power model for bit loading in LACO-OFDM

Author(s):  
Zhenyu Zhang ◽  
Anas Chaaban ◽  
Chao Shen ◽  
Hany Elgala ◽  
Tien Khee Ng ◽  
...  
Micromachines ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 985
Author(s):  
Tingting Song ◽  
Yiyuan Xie ◽  
Yichen Ye ◽  
Shujian Wang ◽  
Yingxue Du

Insertion loss and crosstalk noise will influence network performance severely, especially in optical networks-on-chip (ONoCs) when wavelength division multiplexing (WDM) technology is employed. In this paper, an insertion loss and crosstalk analysis model for WDM-based torus ONoCs is proposed to evaluate the network performance. To demonstrate the feasibility of the proposed methods, numerical simulations of the WDM-based torus ONoCs with optimized crossbar and crux optical routers are presented, and the worst-case link and network scalability are also revealed. The numerical simulation results demonstrate that the scale of the WDM-based torus ONoCs with the crux optical router can reach 6 × 5 or 5 × 6 before the noise power exceeds the signal power, and the network scale is 5 × 4 in the worst case when the optimized crossbar router is employed. Additionally, the simulated results of OptiSystem reveal that WDM-based torus ONoCs have better signal transmission quality when using the crux optical router, which is consistent with previous numerical simulations. Furthermore, compared with the single-wavelength network, WDM-based ONoCs have a great performance improvement in end-to-end (ETE) delay and throughput according to the simulated results of OPNET. The proposed network analysis method provides a reliable theoretical basis and technical support for the design and performance optimization of ONoCs.


Author(s):  
D. Van Dyck

An (electron) microscope can be considered as a communication channel that transfers structural information between an object and an observer. In electron microscopy this information is carried by electrons. According to the theory of Shannon the maximal information rate (or capacity) of a communication channel is given by C = B log2 (1 + S/N) bits/sec., where B is the band width, and S and N the average signal power, respectively noise power at the output. We will now apply to study the information transfer in an electron microscope. For simplicity we will assume the object and the image to be onedimensional (the results can straightforwardly be generalized). An imaging device can be characterized by its transfer function, which describes the magnitude with which a spatial frequency g is transferred through the device, n is the noise. Usually, the resolution of the instrument ᑭ is defined from the cut-off 1/ᑭ beyond which no spadal information is transferred.


Author(s):  
J.D. Geller ◽  
C.R. Herrington

The minimum magnification for which an image can be acquired is determined by the design and implementation of the electron optical column and the scanning and display electronics. It is also a function of the working distance and, possibly, the accelerating voltage. For secondary and backscattered electron images there are usually no other limiting factors. However, for x-ray maps there are further considerations. The energy-dispersive x-ray spectrometers (EDS) have a much larger solid angle of detection that for WDS. They also do not suffer from Bragg’s Law focusing effects which limit the angular range and focusing distance from the diffracting crystal. In practical terms EDS maps can be acquired at the lowest magnification of the SEM, assuming the collimator does not cutoff the x-ray signal. For WDS the focusing properties of the crystal limits the angular range of acceptance of the incident x-radiation. The range is dependent upon the 2d spacing of the crystal, with the acceptance angle increasing with 2d spacing. The natural line width of the x-ray also plays a role. For the metal layered crystals used to diffract soft x-rays, such as Be - O, the minimum magnification is approximately 100X. In the worst case, for the LEF crystal which diffracts Ti - Zn, ˜1000X is the minimum.


Author(s):  
James R. Kremer ◽  
Paul S. Furcinitti ◽  
Eileen O’Toole ◽  
J. Richard McIntosh

Characteristics of electron microscope film emulsions, such as the speed, the modulation transfer function, and the exposure dependence of the noise power spectrum, have been studied for electron energies (80-100keV) used in conventional transmission microscopy. However, limited information is available for electron energies in the intermediate to high voltage range, 300-1000keV. Furthermore, emulsion characteristics, such as optical density versus exposure, for new or improved emulsions are usually only quoted by film manufacturers for 80keV electrons. The need for further film emulsion studies at higher voltages becomes apparent when searching for a film to record low dose images of radiation sensitive biological specimens in the frozen hydrated state. Here, we report the optical density, speed and relative resolution of a few of the more popular electron microscope films after exposure to 1MeV electrons.Three electron microscope films, Kodak S0-163, Kodak 4489, and Agfa Scientia 23D56 were tested with a JEOLJEM-1000 electron microscope operating at an accelerating voltage of 1000keV.


2008 ◽  
Author(s):  
Sonia Savelli ◽  
Susan Joslyn ◽  
Limor Nadav-Greenberg ◽  
Queena Chen

Author(s):  
Akira YAMAWAKI ◽  
Hiroshi KAMABE ◽  
Shan LU
Keyword(s):  

2020 ◽  
Vol 2020 (16) ◽  
pp. 41-1-41-7
Author(s):  
Orit Skorka ◽  
Paul J. Kane

Many of the metrics developed for informational imaging are useful in automotive imaging, since many of the tasks – for example, object detection and identification – are similar. This work discusses sensor characterization parameters for the Ideal Observer SNR model, and elaborates on the noise power spectrum. It presents cross-correlation analysis results for matched-filter detection of a tribar pattern in sets of resolution target images that were captured with three image sensors over a range of illumination levels. Lastly, the work compares the crosscorrelation data to predictions made by the Ideal Observer Model and demonstrates good agreement between the two methods on relative evaluation of detection capabilities.


Sign in / Sign up

Export Citation Format

Share Document