Differential Steering Control for 6 × 6 Wheel-drive Mobile Robot

Author(s):  
Hongqiang Zhao ◽  
Chao Luo ◽  
Yongkang Xu ◽  
Jiehao Li
2012 ◽  
Vol 41 ◽  
pp. 189-195 ◽  
Author(s):  
M. Nor Rudzuan ◽  
D. Hazry ◽  
W.A.N. Khairunizam ◽  
A.B. Shahriman ◽  
M. Saifizi ◽  
...  

2021 ◽  
Vol 343 ◽  
pp. 08003
Author(s):  
Mihai Crenganis ◽  
Cristina Biris ◽  
Claudia Girjob

This paper presents, the development of an autonomous mobile robot with a four-wheel drive and differential locomotion. The mobile robot was developed in the Machines and Industrial Equipment Department from the Engineering Faculty of Sibiu. The main purpose of developing this type of mobile platform was the ability to transport different types of cargo either in industrial spaces or on rough terrain. Another important objective was that this platform could be driven in confined or tight spaces where a high degree of manoeuvrability is necessary. The great advantage of this type of mobile platform is the ability to navigate through narrow spaces due to the type of locomotion implemented. The fact that the robot has four driving wheels gives it the ability to travel on rough surfaces and easily bypass obstacles. Another great advantage of the developed mobile robot is that it has a reconfigurable structure. The drivetrain is interchangeable, it can adopt both classic wheels and Mecanum wheels. The first part of the paper presents some general aspects concerning mobile robots and two types of traction wheels used in mobile robotic structures. Subsequently, the paper presents the steps taken in the development of the mobile wheeled platform. At the end of the paper, the electronic part that will be implemented in the structure of the robot is described. The command and control of the entire mobile platform will be described in some future work.


2019 ◽  
Vol 20 (1) ◽  
pp. 87-97 ◽  
Author(s):  
Muhammad Arshad Khan ◽  
Muhammad Faisal Aftab ◽  
Ejaz Ahmed ◽  
Iljoong Youn

Author(s):  
Roman Chertovskih ◽  
Anna Daryina ◽  
Askhat Diveev ◽  
Dmitry Karamzin ◽  
Fernando L. Pereira ◽  
...  

Author(s):  
Hui Jing ◽  
Rongrong Wang ◽  
Cong Li ◽  
Jinxiang Wang

This article investigates the differential steering-based schema to control the lateral and rollover motions of the in-wheel motor-driven electric vehicles. Generated from the different torque of the front two wheels, the differential steering control schema will be activated to function the driver’s request when the regular steering system is in failure, thus avoiding dangerous consequences for in-wheel motor electric vehicles. On the contrary, when the vehicle is approaching rollover, the torque difference between the front two wheels will be decreased rapidly, resulting in failure of differential steering. Then, the vehicle rollover characteristic is also considered in the control system to enhance the efficiency of the differential steering. In addition, to handle the low cost measurement problem of the reference of front wheel steering angle and the lateral velocity, an [Formula: see text] observer-based control schema is presented to regulate the vehicle stability and handling performance, simultaneously. Finally, the simulation is performed based on the CarSim–Simulink platform, and the results validate the effectiveness of the proposed control schema.


Sign in / Sign up

Export Citation Format

Share Document