Robust Differential Steering Control System for an Independent Four Wheel Drive Electric Vehicle

2019 ◽  
Vol 20 (1) ◽  
pp. 87-97 ◽  
Author(s):  
Muhammad Arshad Khan ◽  
Muhammad Faisal Aftab ◽  
Ejaz Ahmed ◽  
Iljoong Youn
2019 ◽  
Vol 79 (4) ◽  
pp. 273
Author(s):  
Muhammad Arshad Khan ◽  
Muhammad Faisal Aftab ◽  
Ejaz Ahmad ◽  
Iljoong Youn

2012 ◽  
Vol 476-478 ◽  
pp. 944-948 ◽  
Author(s):  
Xiao Long Liu ◽  
Shao Peng Zhu ◽  
Zhi Jun Wu

This paper constructs a dynamic model of a four-wheel drive electric vehicle, which contains a vehicle model and a brushless DC motor model. In order to improve the starting and acceleration performance of the electric vehicle, we design a speed and current double closed-loop speed control system based on the constructed dynamic electric vehicle model. The starting and acceleration process of the electric vehicle is simulated and analyzed by CarSim-Matlab/Simulink co-simulation. The effectiveness of the speed control system is evaluated by the co-simulation results. In addition, the robustness of the speed control system is also analyzed for different vehicle masses.


2019 ◽  
Vol 79 (4) ◽  
pp. 273
Author(s):  
Iljoong Youn ◽  
Ejaz Ahmad ◽  
Muhammad Faisal Aftab ◽  
Muhammad Arshad Khan

Actuators ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 135
Author(s):  
Liqing Chen ◽  
Zhiqiang Li ◽  
Juanjuan Yang ◽  
Yu Song

This research focuses on four-wheel-drive electric vehicles. On the basis of the hierarchical coordinated control strategy, the coordinated control system of driving force distribution regulation and differential braking regulation was designed to increase the electric vehicles steering stability under special road working conditions. A seven-degree-of-freedom model of an electric vehicle was established in MATLAB/Simulink, and then a hierarchical coordination control model of the Electronic stability program and dynamic torque distribution control system was established. Adaptive fuzzy control was applied to ESP and, based on the neural network PID control, a torque distribution control system was designed. On the basis of the proposed coordinated control model, a performance simulation and a hardware-in-the-loop test of the control system under the typical working condition of single line shift were carried out. From the final results, it can be seen that the proposed control strategy can greatly improve the safety of the vehicle after serious side slip, increase the stability of the whole vehicle, and effectively increase the vehicle lateral stability.


2021 ◽  
Author(s):  
Utkal Ranjan Muduli ◽  
Khaled Al Jaafari ◽  
Ranjan Kumar Behera ◽  
Abdul R. Beig ◽  
Khalifa Al Hosani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document