Reinforcement Learning-based Sim-to-Real Impedance Parameter Tuning for Robotic Assembly

Author(s):  
Yong-Geon Kim ◽  
Minwoo Na ◽  
Jae-Bok Song
2021 ◽  
Author(s):  
Zhenning Zhou ◽  
Peiyuan Ni ◽  
Xiaoxiao Zhu ◽  
Qixin Cao

2020 ◽  
Vol 39 (7) ◽  
pp. 856-892 ◽  
Author(s):  
Tingxiang Fan ◽  
Pinxin Long ◽  
Wenxi Liu ◽  
Jia Pan

Developing a safe and efficient collision-avoidance policy for multiple robots is challenging in the decentralized scenarios where each robot generates its paths with limited observation of other robots’ states and intentions. Prior distributed multi-robot collision-avoidance systems often require frequent inter-robot communication or agent-level features to plan a local collision-free action, which is not robust and computationally prohibitive. In addition, the performance of these methods is not comparable with their centralized counterparts in practice. In this article, we present a decentralized sensor-level collision-avoidance policy for multi-robot systems, which shows promising results in practical applications. In particular, our policy directly maps raw sensor measurements to an agent’s steering commands in terms of the movement velocity. As a first step toward reducing the performance gap between decentralized and centralized methods, we present a multi-scenario multi-stage training framework to learn an optimal policy. The policy is trained over a large number of robots in rich, complex environments simultaneously using a policy-gradient-based reinforcement-learning algorithm. The learning algorithm is also integrated into a hybrid control framework to further improve the policy’s robustness and effectiveness. We validate the learned sensor-level collision-3avoidance policy in a variety of simulated and real-world scenarios with thorough performance evaluations for large-scale multi-robot systems. The generalization of the learned policy is verified in a set of unseen scenarios including the navigation of a group of heterogeneous robots and a large-scale scenario with 100 robots. Although the policy is trained using simulation data only, we have successfully deployed it on physical robots with shapes and dynamics characteristics that are different from the simulated agents, in order to demonstrate the controller’s robustness against the simulation-to-real modeling error. Finally, we show that the collision-avoidance policy learned from multi-robot navigation tasks provides an excellent solution for safe and effective autonomous navigation for a single robot working in a dense real human crowd. Our learned policy enables a robot to make effective progress in a crowd without getting stuck. More importantly, the policy has been successfully deployed on different types of physical robot platforms without tedious parameter tuning. Videos are available at https://sites.google.com/view/hybridmrca .


Author(s):  
Yang Gao ◽  
Christian M. Meyer ◽  
Mohsen Mesgar ◽  
Iryna Gurevych

Document summarisation can be formulated as a sequential decision-making problem, which can be solved by Reinforcement Learning (RL) algorithms. The predominant RL paradigm for summarisation learns a cross-input policy, which requires considerable time, data and parameter tuning due to the huge search spaces and the delayed rewards. Learning input-specific RL policies is a more efficient alternative, but so far depends on handcrafted rewards, which are difficult to design and yield poor performance. We propose RELIS, a novel RL paradigm that learns a reward function with Learning-to-Rank (L2R) algorithms at training time and uses this reward function to train an input-specific RL policy at test time. We prove that RELIS guarantees to generate near-optimal summaries with appropriate L2R and RL algorithms. Empirically, we evaluate our approach on extractive multi-document summarisation. We show that RELIS reduces the training time by two orders of magnitude compared to the state-of-the-art models while performing on par with them.


Author(s):  
Emmanouil Spyrakos-Papastavridis ◽  
Navvab Kashiri ◽  
Jinoh Lee ◽  
Nikos G. Tsagarakis ◽  
Darwin G. Caldwell

Author(s):  
Chuang Wang ◽  
Chengqi Lin ◽  
Biao Liu ◽  
Chupeng Su ◽  
Pengpeng Xu ◽  
...  

Big Data ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 270-290
Author(s):  
Haizhou Du ◽  
Ping Han ◽  
Qiao Xiang ◽  
Sheng Huang

Sign in / Sign up

Export Citation Format

Share Document