Reduction of the Leakage Currents by Switching Transition Synchronization for a Four-Switch Buck-Boost Converter

Author(s):  
M. Zehelein ◽  
J. Portik ◽  
M. Nitzsche ◽  
P. Marx ◽  
J. Roth-Stielow
2020 ◽  
Vol 13 (2) ◽  
pp. 77
Author(s):  
Samia Jenkal ◽  
Mustapha Kourchi ◽  
Azeddine Rachdy ◽  
Otmane Oussalem ◽  
Mhand Oubella ◽  
...  
Keyword(s):  
Low Cost ◽  

Author(s):  
P.Melba Mary ◽  
◽  
R. Anand ◽  
V. Akila ◽  
◽  
...  

1998 ◽  
Author(s):  
I. De Wolf ◽  
G. Groeseneken ◽  
H.E. Maes ◽  
M. Bolt ◽  
K. Barla ◽  
...  

Abstract It is shown, using micro-Raman spectroscopy, that Shallow Trench Isolation introduces high stresses in the active area of silicon devices when wet oxidation steps are used. These stresses result in defect formation in the active area, leading to high diode leakage currents. The stress levels are highest near the outer edges of line structures and at square structures. They also increase with decreasing active area dimensions.


Author(s):  
R. Rosenkranz ◽  
W. Werner

Abstract In many cases of failure localization, passive voltage contrast (PVC) localization method does not work, because it is not possible to charge up conducting structures which supposed to be dark in the SEM and FIB images. The reason for this is leakage currents. In this article, the authors show how they succeeded in overcoming these difficulties by the application of the active voltage contrast (AVC) method as it was described as biased voltage contrast by Campbell and Soden. They identified three main cases where the PVC didn't work but where they succeeded in failure localization with the AVC method. This is illustrated with the use of two case studies. Compared to the optical beam based methods the resolution is much better so a single failing contact of e.g. 70 nm technology can clearly be identified which cannot be done by TIVA or OBIRCH.


Sign in / Sign up

Export Citation Format

Share Document