Attention-based multi-scale prediction network for time-series data

2021 ◽  
pp. 1-16
Author(s):  
Junjie Li ◽  
Lin Zhu ◽  
Yong Zhang ◽  
Da Guo ◽  
Xingwen Xia
2020 ◽  
Vol 29 (07n08) ◽  
pp. 2040010
Author(s):  
Shao-Pei Ji ◽  
Yu-Long Meng ◽  
Liang Yan ◽  
Gui-Shan Dong ◽  
Dong Liu

Time series data from real problems have nonlinear, non-smooth, and multi-scale composite characteristics. This paper first proposes a gated recurrent unit-correction (GRU-corr) network model, which adds a correction layer to the GRU neural network. Then, a adaptive staged variation PSO (ASPSO) is proposed. Finally, to overcome the drawbacks of the imprecise selection of the GRU-corr network parameters and obtain the high-precision global optimization of network parameters, weight parameters and the hidden nodes number of GRU-corr is optimized by ASPSO, and a time series prediction model (ASPSO-GRU-corr) is proposed based on the GRU-corr optimized by ASPSO. In the experiment, a comparative analysis of the optimization performance of ASPSO on a benchmark function was performed to verify its validity, and then the ASPSO-GRU-corr model is used to predict the ship motion cross-sway angle data. The results show that, ASPSO has better optimization performance and convergence speed compared with other algorithms, while the ASPSO-GRU-corr has higher generalization performance and lower architecture complexity. The ASPSO-GRU-corr can reveal the intrinsic multi-scale composite features of the time series, which is a reliable nonlinear and non-steady time series prediction method.


Author(s):  
Zipeng Chen ◽  
Qianli Ma ◽  
Zhenxi Lin

Multi-scale information is crucial for modeling time series. Although most existing methods consider multiple scales in the time-series data, they assume all kinds of scales are equally important for each sample, making them unable to capture the dynamic temporal patterns of time series. To this end, we propose Time-Aware Multi-Scale Recurrent Neural Networks (TAMS-RNNs), which disentangle representations of different scales and adaptively select the most important scale for each sample at each time step. First, the hidden state of the RNN is disentangled into multiple independently updated small hidden states, which use different update frequencies to model time-series multi-scale information. Then, at each time step, the temporal context information is used to modulate the features of different scales, selecting the most important time-series scale. Therefore, the proposed model can capture the multi-scale information for each time series at each time step adaptively. Extensive experiments demonstrate that the model outperforms state-of-the-art methods on multivariate time series classification and human motion prediction tasks. Furthermore, visualized analysis on music genre recognition verifies the effectiveness of the model.


2014 ◽  
Vol 68 ◽  
pp. 494-504 ◽  
Author(s):  
Katie Coughlin ◽  
Aditya Murthi ◽  
Joseph Eto

2014 ◽  
Vol 20 (5) ◽  
pp. 808-821 ◽  
Author(s):  
Myoungsu Cho ◽  
Bohyoung Kim ◽  
Hee-Joon Bae ◽  
Jinwook Seo

Author(s):  
Chuxu Zhang ◽  
Dongjin Song ◽  
Yuncong Chen ◽  
Xinyang Feng ◽  
Cristian Lumezanu ◽  
...  

Nowadays, multivariate time series data are increasingly collected in various real world systems, e.g., power plants, wearable devices, etc. Anomaly detection and diagnosis in multivariate time series refer to identifying abnormal status in certain time steps and pinpointing the root causes. Building such a system, however, is challenging since it not only requires to capture the temporal dependency in each time series, but also need encode the inter-correlations between different pairs of time series. In addition, the system should be robust to noise and provide operators with different levels of anomaly scores based upon the severity of different incidents. Despite the fact that a number of unsupervised anomaly detection algorithms have been developed, few of them can jointly address these challenges. In this paper, we propose a Multi-Scale Convolutional Recurrent Encoder-Decoder (MSCRED), to perform anomaly detection and diagnosis in multivariate time series data. Specifically, MSCRED first constructs multi-scale (resolution) signature matrices to characterize multiple levels of the system statuses in different time steps. Subsequently, given the signature matrices, a convolutional encoder is employed to encode the inter-sensor (time series) correlations and an attention based Convolutional Long-Short Term Memory (ConvLSTM) network is developed to capture the temporal patterns. Finally, based upon the feature maps which encode the inter-sensor correlations and temporal information, a convolutional decoder is used to reconstruct the input signature matrices and the residual signature matrices are further utilized to detect and diagnose anomalies. Extensive empirical studies based on a synthetic dataset and a real power plant dataset demonstrate that MSCRED can outperform state-ofthe-art baseline methods.


2013 ◽  
Author(s):  
Stephen J. Tueller ◽  
Richard A. Van Dorn ◽  
Georgiy Bobashev ◽  
Barry Eggleston

Author(s):  
Rizki Rahma Kusumadewi ◽  
Wahyu Widayat

Exchange rate is one tool to measure a country’s economic conditions. The growth of a stable currency value indicates that the country has a relatively good economic conditions or stable. This study has the purpose to analyze the factors that affect the exchange rate of the Indonesian Rupiah against the United States Dollar in the period of 2000-2013. The data used in this study is a secondary data which are time series data, made up of exports, imports, inflation, the BI rate, Gross Domestic Product (GDP), and the money supply (M1) in the quarter base, from first quarter on 2000 to fourth quarter on 2013. Regression model time series data used the ARCH-GARCH with ARCH model selection indicates that the variables that significantly influence the exchange rate are exports, inflation, the central bank rate and the money supply (M1). Whereas import and GDP did not give any influence.


Sign in / Sign up

Export Citation Format

Share Document