Weakly Supervised Domain Adaptation using Super-pixel labeling for Semantic Segmentation

Author(s):  
Masaki Yamazaki ◽  
Xingchao Peng ◽  
Kuniaki Saito ◽  
Ping Hu ◽  
Kate Saenko ◽  
...  
Author(s):  
R. P. A. Bormans ◽  
R. C. Lindenbergh ◽  
F. Karimi Nejadasl

One of the biggest challenges for an autonomous vehicle (and hence the WEpod) is to see the world as humans would see it. This understanding is the base for a successful and reliable future of autonomous vehicles. Real-world data and semantic segmentation generally are used to achieve full understanding of its surroundings. However, deploying a pretrained segmentation network to a new, previously unseen domain will not attain similar performance as it would on the domain where it is trained on due to the differences between the domains. Although research is done concerning the mitigation of this domain shift, the factors that cause these differences are not yet fully explored. We filled this gap with the investigation of several factors. A base network was created by a two-step finetuning procedure on a convolutional neural network (SegNet) which is pretrained on CityScapes (a dataset for semantic segmentation). The first tuning step is based on RobotCar (road scenery dataset recorded in Oxford, UK) while afterwards this network is fine-tuned for a second time but now on the KITTI (road scenery dataset recorded in Germany) dataset. With this base, experiments are used to obtain the importance of factors such as horizon line, colour and training order for a successful domain adaptation. In this case the domain adaptation is from the KITTI and RobotCar domain to the WEpod domain. For evaluation, groundtruth labels are created in a weakly-supervised setting. Negative influence was obtained for training on greyscale images instead of RGB images. This resulted in drops of IoU values up to 23.9 % for WEpod test images. The training order is a main contributor for domain adaptation with an increase in IoU of 4.7 %. This shows that the target domain (WEpod) is more closely related to RobotCar than to KITTI.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 437
Author(s):  
Yuya Onozuka ◽  
Ryosuke Matsumi ◽  
Motoki Shino

Detection of traversable areas is essential to navigation of autonomous personal mobility systems in unknown pedestrian environments. However, traffic rules may recommend or require driving in specified areas, such as sidewalks, in environments where roadways and sidewalks coexist. Therefore, it is necessary for such autonomous mobility systems to estimate the areas that are mechanically traversable and recommended by traffic rules and to navigate based on this estimation. In this paper, we propose a method for weakly-supervised recommended traversable area segmentation in environments with no edges using automatically labeled images based on paths selected by humans. This approach is based on the idea that a human-selected driving path more accurately reflects both mechanical traversability and human understanding of traffic rules and visual information. In addition, we propose a data augmentation method and a loss weighting method for detecting the appropriate recommended traversable area from a single human-selected path. Evaluation of the results showed that the proposed learning methods are effective for recommended traversable area detection and found that weakly-supervised semantic segmentation using human-selected path information is useful for recommended area detection in environments with no edges.


2020 ◽  
Author(s):  
Jiahui Liu ◽  
Changqian Yu ◽  
Beibei Yang ◽  
Changxin Gao ◽  
Nong Sang

2021 ◽  
Vol 10 (8) ◽  
pp. 523
Author(s):  
Nicholus Mboga ◽  
Stefano D’Aronco ◽  
Tais Grippa ◽  
Charlotte Pelletier ◽  
Stefanos Georganos ◽  
...  

Multitemporal environmental and urban studies are essential to guide policy making to ultimately improve human wellbeing in the Global South. Land-cover products derived from historical aerial orthomosaics acquired decades ago can provide important evidence to inform long-term studies. To reduce the manual labelling effort by human experts and to scale to large, meaningful regions, we investigate in this study how domain adaptation techniques and deep learning can help to efficiently map land cover in Central Africa. We propose and evaluate a methodology that is based on unsupervised adaptation to reduce the cost of generating reference data for several cities and across different dates. We present the first application of domain adaptation based on fully convolutional networks for semantic segmentation of a dataset of historical panchromatic orthomosaics for land-cover generation for two focus cities Goma-Gisenyi and Bukavu. Our experimental evaluation shows that the domain adaptation methods can reach an overall accuracy between 60% and 70% for different regions. If we add a small amount of labelled data from the target domain, too, further performance gains can be achieved.


Sign in / Sign up

Export Citation Format

Share Document