Artificial small-scale field-aligned irregularities in the high latitude ionosphere F region: Comparison between O-and X-mode HF pumping at EISCAT

Author(s):  
Nataly F. Blagoveshchenskaya ◽  
Tatiana D. Borisova ◽  
Alexey S. Kalishin ◽  
Timothy K. Yeoman
Author(s):  
Nataly Blagoveshchenskaya ◽  
Tatiana Borisova ◽  
Alexey Kalishin ◽  
Timothy Yeoman

2011 ◽  
Vol 38 (8) ◽  
pp. n/a-n/a ◽  
Author(s):  
N. F. Blagoveshchenskaya ◽  
T. D. Borisova ◽  
T. K. Yeoman ◽  
M. T. Rietveld ◽  
I. M. Ivanova ◽  
...  

2002 ◽  
Vol 20 (5) ◽  
pp. 647-653 ◽  
Author(s):  
E. Kolesnikova ◽  
T. R. Robinson ◽  
J. A. Davies

Abstract. Simultaneous HF scattering from the different regions of the heated volume is used to investigate characteristics of the small-scale field-aligned irregularities in the F-region. Time of growth, decay rate and saturation level for different pump powers are deduced from the observations and are compared with their behaviour predicted by the thermal parametric instability model. As a result, the estimates of the density and of the temperature modifications inside of the irregularities are obtained.Key words. Ionosphere (ionospheric irregularities)


2021 ◽  
pp. 5-13
Author(s):  
D. D. Rogov ◽  
◽  
V. M. Vystavnoi ◽  
N. F. Blagoveshchenskaya ◽  
P. E. Baryshev ◽  
...  

The network for monitoring the high-latitude ionosphere by the method of oblique ionospheric sounding deployed in the Russian Arctic region is considered. The study describes the main results of operational data processing for studying the high-latitude ionosphere and determining the conditions for the optimum operation of radio communication systems and over-the-horizon radars in this region. The study demonstrates the potential of the network as a tool for the remote diagnostics of parameters of small-scale artificial ionospheric irregularities induced by powerful HF radio waves in the mid-latitude ionospheric F-region.


2009 ◽  
Vol 27 (1) ◽  
pp. 65-81 ◽  
Author(s):  
R. S. Dhillon ◽  
T. R. Robinson ◽  
T. K. Yeoman

Abstract. Previous studies of the aspect sensitivity of heater-enhanced incoherent radar backscatter in the high-latitude ionosphere have demonstrated the directional dependence of incoherent scatter signatures corresponding to artificially excited electrostatic waves, together with consistent field-aligned signatures that may be related to the presence of artificial field-aligned irregularities. These earlier high-latitude results have provided motivation for repeating the investigation in the different geophysical conditions that obtain in the polar cap ionosphere. The Space Plasma Exploration by Active Radar (SPEAR) facility is located within the polar cap and has provided observations of RF-enhanced ion and plasma line spectra recorded by the EISCAT Svalbard UHF incoherent scatter radar system (ESR), which is collocated with SPEAR. In this paper, we present observations of aspect sensitive E- and F-region SPEAR-induced ion and plasma line enhancements that indicate excitation of both the purely growing mode and the parametric decay instability, together with sporadic E-layer results that may indicate the presence of cavitons. We note consistent enhancements from field-aligned, vertical and also from 5° south of field-aligned. We attribute the prevalence of vertical scatter to the importance of the Spitze region, and of that from field-aligned to possible wave/irregularity coupling.


2002 ◽  
Vol 20 (11) ◽  
pp. 1769-1781 ◽  
Author(s):  
J.-P. Villain ◽  
R. André ◽  
M. Pinnock ◽  
R. A. Greenwald ◽  
C. Hanuise

Abstract. The HF radars of the Super Dual Auroral Radar Network (SuperDARN) provide measurements of the E × B drift of ionospheric plasma over extended regions of the high-latitude ionosphere. We have conducted a statistical study of the associated Doppler spectral width of ionospheric F-region echoes. The study has been conducted with all available radars from the Northern Hemisphere for 2 specific periods of time. Period 1 corresponds to the winter months of 1994, while period 2 covers October 1996 to March 1997. The distributions of data points and average spectral width are presented as a function of Magnetic Latitude and Magnetic Local Time. The databases are very consistent and exhibit the same features. The most stringent features are: a region of very high spectral width, collocated with the ionospheric LLBL/cusp/mantle region; an oval shaped region of high spectral width, whose equator-ward boundary matches the poleward limit of the Holzworth and Meng auroral oval. A simulation has been conducted to evaluate the geometrical and instrumental effects on the spectral width. It shows that these effects cannot account for the observed spectral features. It is then concluded that these specific spectral width characteristics are the signature of ionospheric/magnetospheric coupling phenomena.Key words. Ionosphere (auroral ionosphere; ionosphere-magnetosphere interactions; ionospheric irregularities)


Radio Science ◽  
1994 ◽  
Vol 29 (1) ◽  
pp. 317-335 ◽  
Author(s):  
P. K. Chaturvedi ◽  
M. J. Keskinen ◽  
S. L. Ossakow ◽  
J. A. Fedder

Sign in / Sign up

Export Citation Format

Share Document