scholarly journals Towards a high-resolution chronostratigraphy and geochronology for the Pannonian Stage: Significance of the Paks cores (Central Pannonian Basin)

2019 ◽  
Vol 149 (4) ◽  
pp. 351
Author(s):  
Imre Magyar ◽  
Orsolya Sztanó ◽  
Krisztina Sebe ◽  
Lajos Katona ◽  
Vivien Csoma ◽  
...  

A new stratigraphic standard for the open lacustrine to deltaic Pannonian Stage is emerging from the combined sedimentological, lithostratigraphical, sequence stratigraphical, biostratigraphical, seismic stratigraphical, geochronological, and magnetostratigraphical investigations of 6 long drill cores. These were drilled by Paks II Nuclear Power Plant Plc. as a preparatory step for the construction of a new power plant near the city of Paks, Central Pannonian Basin, between 2015 and 2016. The boreholes are in a distance of 8-12 km from each other, and five of them fully penetrated the local Pannonian sequence in a thickness of 390 to 662 m. Each core includes offshore clay marl deposited far from sediment entry points (Endrőd Fm), heterolithic, sandy siltstones of a <200 m high shelf-margin slope (Algyő Fm), and several stacked deltaic deposits from prodelta silts to sandy mouth bars, heterolithics, lignite and sandy channel-fills of the delta plain (Újfalu Fm). Magnetostratigraphic investigations from two cores and authigenic 10Be/9Be dating from two others were combined by means of seismic correlation between the boreholes, and thus they provide a solid geochronological and chronostratigraphic basis for the interpretation of the sedimentologial and paleontological records of the cores. The continuous representation of the earliest Pannonian (11.6–9.1 Ma) in the cores needs further investigation, as neither magnetostratigraphy nor authigenic 10Be/9Be dating gave reliable age data from the basal, condensed calcareous marls. The 9.1 to 6.5 Ma interval, however, is represented in the cores by various lithologies and abundant and sometimes excellently preserved fossils. In the deltaic succession, 8 sedimentary sequences were correlated between the cores; as their duration is not more than 400 kyr each, they can be regarded as 4th-order sequences. The paleontological record of the cores shows a very good agreement with the formerly established biochronostratigraphical system. The cores provide an insight into the evolution of the sedimentary environment and the biota of Lake Pannon between 9.1 and 6.5 Ma with a so far unprecedented temporal and spatial resolution.

Author(s):  
Filip Andjelkovic ◽  
Dejan Radivojevic

The problem of correlating Lake Pannon sediments across its basin has been the occupation of many geologists. At first, it was hampered by the prevalence of biostratigraphic, rather than lithostratigraphic correlation. The task became accomplishable when, thanks to seismic survey data, the strongly progradational character of Lake Pannon sedimentation had been understood. Thus, this paper aims to describe the formations from all parts of Lake Pannon and compare them to the ones described in Serbia. Material used includes published and unpublished data from all countries w ith Pannonian Basin System upper Miocene and lower Pliocene deposits, in the form of seismic, borehole and outcrop data. Even though the system is strongly asymmetric, both spatially and temporally, the formation synthesis framework should help better understanding among geologists operating w ithin the basin. For the first t ime the informal formations are proposed for all Lake Pannon sediments in Serbia. The formations are linked to a progradational deltaic system w ithin the following succession: basinal plain-turbidite-slope-delta front-delta plain-lacustrine and alluvial environments. The lithostratigraphic correlation has a huge potential in the context of industry. The main potential surely lies in petroleum geology, but it could be also very useful for exploration of geothermal energy, hydrogeology and construction materials.


2011 ◽  
Vol 62 (6) ◽  
pp. 519-534 ◽  
Author(s):  
Michal Kováč ◽  
Rastislav Synak ◽  
Klement Fordinál ◽  
Peter Joniak ◽  
Csaba Tóth ◽  
...  

Late Miocene and Pliocene history of the Danube Basin: inferred from development of depositional systems and timing of sedimentary facies changesThe development of the northern Danube Basin (nDB) was closely related to the Late Miocene geodynamic evolution of the Pannonian Basin System. It started with a wide rifting which led to subsidence of several basin depocenters which were gradually filled during the Late Miocene and Early Pliocene. In the Late Pliocene the subsidence continued only in the basin's central part, while the northern marginal zone suffered inversion and the uplifted sedimentary fill began to be eroded. Individual stages of the basin development are well recorded in its sedimentary succession, where at least three great tectono-sedimentary cycles were documented. Firstly, a lacustrine cycle containing Lower, Middle and lowermost Upper Pannonian sediments (A-F Zones;sensuPapp 1951) deposited in the time span 11.6-8.9 Ma and is represented in the nDB in Slovakia by the Ivanka and Beladice Formations. In the Danube Basin of the southern part in Hungary, where the formations are defined by the appearance of sedimentary facies in time and space, the equivalents are: (1) the deep-water setting marls, clays and sandy turbidites of the Endrod and Szolnok Formations leading to the overlying strata deposits of the basin paleoslope or delta-slope represented by the Algyő Formation, and (2) the final shallow-water setting deposits of marshes, lagoons and a coastal and delta plain composed of clays, sands and coal seams, represented by the Újfalu Formation. The second tectono-sedimentary cycle was deposited in an alluvial environment and it comprises the Upper Pannonian (G and H Zones;sensuPapp 1951) and Lower Pliocene sediments dated 8.9-4.1? Ma. The cycle is represented in the nDB, by the Volkovce Formation and in the southern part by the Zagyva Formation in Hungary. The sedimentary environment is characterized by a wide range of facies from fluvial, deltaic and ephemeral lake to marshes. The third tectono-sedimentary cycle comprises the Upper Pliocene sediments. In Slovakia these are represented by the Kolárovo Formation dated 4.1-2.6 Ma. The formation contains material of weathering crust preserved in fissures of Mesozoic carbonates, diluvial deposits and sediments of the alluvial environment.


2020 ◽  
Vol 39 (5) ◽  
pp. 6339-6350
Author(s):  
Esra Çakır ◽  
Ziya Ulukan

Due to the increase in energy demand, many countries suffer from energy poverty because of insufficient and expensive energy supply. Plans to use alternative power like nuclear power for electricity generation are being revived among developing countries. Decisions for installation of power plants need to be based on careful assessment of future energy supply and demand, economic and financial implications and requirements for technology transfer. Since the problem involves many vague parameters, a fuzzy model should be an appropriate approach for dealing with this problem. This study develops a Fuzzy Multi-Objective Linear Programming (FMOLP) model for solving the nuclear power plant installation problem in fuzzy environment. FMOLP approach is recommended for cases where the objective functions are imprecise and can only be stated within a certain threshold level. The proposed model attempts to minimize total duration time, total cost and maximize the total crash time of the installation project. By using FMOLP, the weighted additive technique can also be applied in order to transform the model into Fuzzy Multiple Weighted-Objective Linear Programming (FMWOLP) to control the objective values such that all decision makers target on each criterion can be met. The optimum solution with the achievement level for both of the models (FMOLP and FMWOLP) are compared with each other. FMWOLP results in better performance as the overall degree of satisfaction depends on the weight given to the objective functions. A numerical example demonstrates the feasibility of applying the proposed models to nuclear power plant installation problem.


Sign in / Sign up

Export Citation Format

Share Document