scholarly journals Isokinetic Force and Work Capacity after Long-Duration Station «MIR» and Short-Term International Space Station Missions

Author(s):  
Koryak Yuri A
2020 ◽  
Vol 91 (5) ◽  
pp. 422-431
Author(s):  
Yuri A. Koryak

INTRODUCTION: The effects of long-duration (213.0 ± 30.5 d) stays aboard the orbital station Mir and short-term (∼10 d) spaceflights aboard the International Space Station (ISS) on the joint torques of various muscles and work capacity of knee extensors were studied in male cosmonauts.METHODS: Joint torque and muscle endurance testing was performed 30 d before and 3–5 d after a spaceflight, using a LIDO® Multi-Joint Isokinetic Rehabilitation System (USA).RESULTS: Greater postflight changes in maximal joint torque were observed for back, knee, and ankle extensors compared with flexors, and the difference was especially clearly seen after long-term spaceflights. The decrease in maximal joint torque of hip extensors substantially varied, being the greatest in voluntary concentric movements in a low-velocity high-force mode at angular velocities of 30 and 60° · s−1 (by 16 and 13%, respectively) and the lowest in high-velocity modes at velocities of 120 and 180° · s−1 (by 9 and 11%, respectively). Muscle work capacity was inferred from the gradient of declining muscle force produced in a series of rhythmic voluntary concentric movements and was found to decrease after both short- and long-term spaceflights. The area under the muscle contraction curve decreased to a greater extent and in all regions of the curve after long-term spaceflights. The fatigue index averaged 0.90 ± 0.03 at baseline and remained much the same, 0.90 ± 0.04, after a short-term spaceflight. However, after a long-duration spaceflight, the fatigue index increased 14.1%.DISCUSSION: The finding that the contractile functions and work capacity of muscles decrease more after long-term than after short-term spaceflights in spite of the physical training program of a certain type gave grounds to assume that physical training employed in long-term spaceflights were insufficient to simulate the daily mechanical load that the cosmonauts had before a spaceflight.Koryak YA. Isokinetic force and work capacity after long-duration Space Station Mir and short-term International Space Station missions. Aerosp Med Hum Perform. 2020; 91(5):422–431.


Author(s):  
Abhijit V. Shevade ◽  
Margie L. Homer ◽  
Adam K. Kisor ◽  
Shiao-Ping S. Yen ◽  
Liana M. Lara ◽  
...  

This chapter describes the development, operation, and experimental results of the Third Generation JPL Electronic Nose (ENose), which operated on board the International Space Station (ISS) as a technology demonstration for seven months from 2008-2009. The JPL ENose is an array of chemiresistive sensors designed to monitor the environment for the sudden release of targeted chemical species, such as leaks or spills. The Third Generation JPL ENose was designed to detect, identify, and quantify eleven chemical species, three inorganic, ammonia, mercury, and sulfur dioxide, and eight organic compounds, which represent common classes of organic compounds such as alcohols, aromatics, and halocarbons. Chemical species were quantified at or below their 24 hour Spacecraft Maximum Allowable Concentrations (SMAC), generally in the parts-per-million range; some targeted species were detected in the parts-per-billion range. Analysis of third generation JPL ENose monitoring data on ISS show the short term presence of low concentrations of alcohols, octafluoropropane, and formaldehyde as well as frequent short term unknown events. Repeated unknown events were identified post-flight as sulfur hexafluoride.


2017 ◽  
Vol 122 (4) ◽  
pp. 968-975 ◽  
Author(s):  
C. J. Ade ◽  
R. M. Broxterman ◽  
A. D. Moore ◽  
T. J. Barstow

We have previously predicted that the decrease in maximal oxygen uptake (V̇o2max) that accompanies time in microgravity reflects decrements in both convective and diffusive O2 transport to the mitochondria of the contracting myocytes. The aim of this investigation was therefore to quantify the relative changes in convective O2 transport (Q̇o2) and O2 diffusing capacity (Do2) following long-duration spaceflight. In nine astronauts, resting hemoglobin concentration ([Hb]), V̇o2max, maximal cardiac output (Q̇Tmax), and differences in arterial and venous O2 contents ([Formula: see text]-[Formula: see text]) were obtained retrospectively for International Space Station Increments 19–33 (April 2009–November 2012). Q̇o2 and Do2 were calculated from these variables via integration of Fick’s Principle of Mass Conservation and Fick’s Law of Diffusion. V̇o2max significantly decreased from pre- to postflight (−53.9 ± 45.5%, P = 0.008). The significant decrease in Q̇Tmax (−7.8 ± 9.1%, P = 0.05), despite an unchanged [Hb], resulted in a significantly decreased Q̇o2 (−11.4 ± 10.5%, P = 0.02). Do2 significantly decreased from pre- to postflight by −27.5 ± 24.5% ( P = 0.04), as did the peak [Formula: see text]-[Formula: see text] (−9.2 ± 7.5%, P = 0.007). With the use of linear regression analysis, changes in V̇o2max were significantly correlated with changes in Do2 ( R2 = 0.47; P = 0.04). These data suggest that spaceflight decreases both convective and diffusive O2 transport. These results have practical implications for future long-duration space missions and highlight the need to resolve the specific mechanisms underlying these spaceflight-induced changes along the O2 transport pathway. NEW & NOTEWORTHY Long-duration spaceflight elicited a significant decrease in maximal oxygen uptake. Given the adverse physiological adaptations to microgravity along the O2 transport pathway that have been reported, an integrative approach to the determinants of postflight maximal oxygen uptake is needed. We demonstrate that both convective and diffusive oxygen transport are decreased following ~6 mo International Space Station missions.


Agronomy ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 687
Author(s):  
Petronia Carillo ◽  
Biagio Morrone ◽  
Giovanna Marta Fusco ◽  
Stefania De Pascale ◽  
Youssef Rouphael

The possibility of prolonging space missions—and consequently the permanence of humans in space—depends on the possibility of providing them with an adequate supply of fresh foods to meet their nutritional requirements. This would allow space travelers to mitigate health risks associated with exposure to space radiation, microgravity and psychological stress. In this review, we attempt to critically summarize existing studies with the aim of suggesting possible solutions to overcome the challenges to develop a bio-regenerative life support system (BLSS) that can contribute to life support, supplying food and O2, while removing CO2 on the International Space Station (ISS). We describe the physical constraints and energy requirements for ISS farming in relation to space and energy resources, the problems related to lighting systems and criteria for selecting plants suitable for farming in space and microgravity. Clearly, the dimensions of a growth hardware that can be placed on ISS do not allow to produce enough fresh food to supplement the stored, packaged diet of astronauts; however, experimentation on ISS is pivotal for implementing plant growth systems and paves the way for the next long-duration space missions, including those in cis-lunar space and to the lunar surface.


Sign in / Sign up

Export Citation Format

Share Document