Arnold Diffusion for Smooth Systems of Two and a Half Degrees of Freedom

Author(s):  
Vadim Kaloshin ◽  
Ke Zhang

Arnold diffusion, which concerns the appearance of chaos in classical mechanics, is one of the most important problems in the fields of dynamical systems and mathematical physics. Since it was discovered by Vladimir Arnold in 1963, it has attracted the efforts of some of the most prominent researchers in mathematics. The question is whether a typical perturbation of a particular system will result in chaotic or unstable dynamical phenomena. This book provides the first complete proof of Arnold diffusion, demonstrating that that there is topological instability for typical perturbations of five-dimensional integrable systems (two and a half degrees of freedom). This proof realizes a plan John Mather announced in 2003 but was unable to complete before his death. The book follows Mather's strategy but emphasizes a more Hamiltonian approach, tying together normal forms theory, hyperbolic theory, Mather theory, and weak KAM theory. Offering a complete, clean, and modern explanation of the steps involved in the proof, and a clear account of background material, the book is designed to be accessible to students as well as researchers. The result is a critical contribution to mathematical physics and dynamical systems, especially Hamiltonian systems.

2011 ◽  
Vol 66 (8-9) ◽  
pp. 468-480 ◽  
Author(s):  
Ognyan Christov

Abstract The low-dimensional Gross-Neveu models are studied. For the systems, related to the Lie algebras so(4), so(5), sp(4), sl(3), we prove that they have Birkhoff-Gustavson normal forms which are integrable and non-degenerate in Kolmogorov-Arnold-Moser (KAM) theory sense. Unfortunately, this is not the case for systems with three degrees of freedom, related to the Lie algebras so(6) ~ sl(4), so(7), sp(6); their Birkhoff-Gustavson normal forms are proven to be non-integrable in the Liouville sense. The last result can easily be extended to higher dimensions.


A study of two-degrees-of-freedom systems with a potential which is discrete-symmetric (even in one of the position variables) is carried out for the resonance cases 1:2, 1:1, 2:1 and 1:3. To produce both qualitative and quantitative results, we obtain in each resonance case normal forms by higher order averaging procedures. This method is related to Birkhoff normalization and provides us with rigorous asymptotic estimates for the approximate solutions. The normal forms have been used to obtain a classification of possible local and global bifurcations for these dynamical systems. One of the applications here is to describe the two-parameter family of bifurcations obtained by detuning a one-parameter family studied by Braun. In all the resonances discussed an approximate integral of the motion other than the total energy exists, but in the 2:1 and 1:3 resonance cases this degenerates into the partial energy of the z motion. In conclusion some remarks are made on the relation between two-degrees-of-freedom systems and solutions of the collisionless Boltzmann equation. Moreover we are able to make some observations on the Henon-Heiles problem and certain classical examples of potentials.


2009 ◽  
Vol 19 (09) ◽  
pp. 2823-2869 ◽  
Author(s):  
Z. E. MUSIELAK ◽  
D. E. MUSIELAK

Studies of nonlinear dynamical systems with many degrees of freedom show that the behavior of these systems is significantly different as compared with the behavior of systems with less than two degrees of freedom. These findings motivated us to carry out a survey of research focusing on the behavior of high-dimensional chaos, which include onset of chaos, routes to chaos and the persistence of chaos. This paper reports on various methods of generating and investigating nonlinear, dissipative and driven dynamical systems that exhibit high-dimensional chaos, and reviews recent results in this new field of research. We study high-dimensional Lorenz, Duffing, Rössler and Van der Pol oscillators, modified canonical Chua's circuits, and other dynamical systems and maps, and we formulate general rules of high-dimensional chaos. Basic techniques of chaos control and synchronization developed for high-dimensional dynamical systems are also reviewed.


Author(s):  
M.A. Bubenchikov ◽  
◽  
A.M. Bubenchikov ◽  
D.V. Mamontov ◽  
◽  
...  

The aim of this work is to apply classical mechanics to a description of the dynamic state of C20@C80 diamond complex. Endohedral rotations of fullerenes are of great interest due to the ability of the materials created on the basis of onion complexes to accumulate energy at rotational degrees of freedom. For such systems, a concept of temperature is not specified. In this paper, a closed description of the rotation of large molecules arranged in diamond shells is obtained in the framework of the classical approach. This description is used for C20@C80 diamond complex. Two different problems of molecular dynamics, distinguished by a fixing method for an outer shell of the considered bimolecular complex, are solved. In all the cases, the fullerene rotation frequency is calculated. Since a class of possible motions for a single carbon body (molecule) consists of rotations and translational displacements, the paper presents the equations determining each of these groups of motions. Dynamic equations for rotational motions of molecules are obtained employing the moment of momentum theorem for relative motions of the system near the fullerenes’ centers of mass. These equations specify the operation of the complex as a molecular pendulum. The equations of motion of the fullerenes’ centers of mass determine vibrations in the system, i.e. the operation of the complex as a molecular oscillator.


2013 ◽  
Vol 23 (03) ◽  
pp. 1330009 ◽  
Author(s):  
ALBERT C. J. LUO ◽  
MOZHDEH S. FARAJI MOSADMAN

In this paper, the analytical dynamics for singularity, switchability, and bifurcations of a 2-DOF friction-induced oscillator is investigated. The analytical conditions of the domain flow switchability at the boundaries and edges are developed from the theory of discontinuous dynamical systems, and the switchability conditions of boundary flows from domain and edge flows are presented. From the singularity and switchability of flow to the boundary, grazing, sliding and edge bifurcations are obtained. For a better understanding of the motion complexity of such a frictional oscillator, switching sets and mappings are introduced, and mapping structures for periodic motions are adopted. Using an eigenvalue analysis, the stability and bifurcation analysis of periodic motions in the friction-induced system is carried out. Analytical predictions and parameter maps of periodic motions are performed. Illustrations of periodic motions and the analytical conditions are completed. The analytical conditions and methodology can be applied to the multi-degrees-of-freedom frictional oscillators in the same fashion.


Sign in / Sign up

Export Citation Format

Share Document