scholarly journals Formation features of composite electrochemical nickel and nanostructured zirconium boride coatings

2019 ◽  
Vol 19 (1) ◽  
pp. 31-37 ◽  
Author(s):  
L. A. Degtyar ◽  
I. S. Ivanina ◽  
I. Yu. Zhukova

Introduction.The electrodeposition of composite electrochemical coatings from electrolyte-colloid nickel plating containing ultradisperse zirconium boride powder is studied. The work objectives are as follows: to study mechanical-and-physical properties of the composites based on nickel and nanostructured zirconium boride, and to determine optimal conditions for the application of such electrochemical coatings.Materials and Methods.Microhardness of composite electrochemical coatings was measured using PMT-3 microhardness tester on samples with the layer thickness of 30 μm under the indentation load of 100 g. A three-ball machine was used to determine wear resistance of the coatings. Sample tests were carried out under dry friction modes and with the use of 3% RV coolant. WSD values were measured by MIR-3 TU 3-3.1954-86 microscope. To determine the internal stresses in the coating, we used a flexible cathode method up to GOST 9.302-88.Research Results.The electrolyte-colloid composition and modes of electrodeposition of composite nickel - nanostructured zirconium boride coatings are developed. Mechanicaland-physical properties (microhardness, wear resistance and internal stresses) of the obtained composite electrochemical coatings are analyzed. Recommendations for use of the developed electrolyte and the application of a composite coating on machine parts for their surface hardening are formulated.Discussion and Conclusions. Ni–ZrB2 CEC (composite electrochemical coating) has high microhardness (10–11 hPa at the indentation load of 100 g), which exceeds the microhardness of pure nickel by 1.5–2 times. As the microhardness increases, the internal stresses ofNi–ZrB2 CEC decrease. The proposed coatings were compared to chromium ones deposited from the environmentally hazardous electrolytes. The wear resistance ofNi–ZrB2 CEC is 2–5 times higher than that of chromium coatings. Thus, instead of chromic coatings, it is recommended to use the proposed composition for surface hardening of parts of the specialty machinery and industrial equipment

2021 ◽  
Vol 2131 (4) ◽  
pp. 042022
Author(s):  
K Ovchinnikova ◽  
I Zhukova ◽  
L Degtyar

Abstract The physico-mechanical properties of composite electrochemical coatings (CEC) nickel-cobalt-aluminum oxide were investigated depending on the electrolyte parameters and electrolysis conditions. The previously developed low-concentration chloride electrolyte for nickel plating was used as an electrolyte to replace environmentally hazardous chromium plating electrolytes containing hexavalent chromium, which is prohibited by the laws of many countries. The wear resistance of the obtained CEC was determined on a three-ball friction machine. This made it possible to establish that the wear resistance of the CEC exceeds the wear of chrome coatings in dry friction mode by 2-2,5 times and is comparable to chromium in the friction mode with lubrication. In the dry friction mode, the higher wear resistance of the nickel-cobalt-alumina coating is explained only by the higher hardness of the latter. Probably, upon destruction of the coating, the particles of the alloying addition act as a solid lubricant, which causes an increase in the resistance of the CEC during wear. The microhardness of the CEC was determined using a PMT-3 microhardness tester and amounted to 6-25 GPa. The microhardness value was influenced by the concentration and properties of the dispersed phase, as well as the electrolysis conditions - the temperature and pH of the electrolyte, and the cathode current density. “Corrodcote” test was used in the study of corrosion. According to its data, the corrosion resistance of CEC is 2-3 times higher than the corrosion resistance of chromium deposits. The results obtained make it possible to recommend the developed functional CEC of nickel-cobalt-alumina instead of chromium coatings as corrosion- and wear-resistant.


Alloy Digest ◽  
1995 ◽  
Vol 44 (12) ◽  

Abstract COLMONOY No. 83 PTA is a nickel-base hard surfacing alloy containing tungsten carbide. The application method is plasma transferred arc and the application is designed to protect extrusion screws. This datasheet provides information on composition, physical properties, microstructure, hardness, tensile properties, and compressive strength. It also includes information on wear resistance as well as machining and powder metal forms. Filing Code: Ni-493. Producer or source: Wall Colmonoy Corporation.


Alloy Digest ◽  
1993 ◽  
Vol 42 (7) ◽  

Abstract DELORO 716 PM is a nickel-base alloy recommended for handling conditions of wear, erosion, heat and corrosion when impact is also a consideration. This datasheet provides information on composition, physical properties, and hardness. It also includes information on high temperature performance and wear resistance as well as machining and joining. Filing Code: Ni-435. Producer or source: Deloro Stellite Inc.


Alloy Digest ◽  
1998 ◽  
Vol 47 (4) ◽  

Abstract Deltalloy 4032 has good machinability and drilling characteristics when using single-point or multispindle screw machines and an excellent surface finish using polycrystalline or carbide tooling. The alloy demonstrates superior wear resistance and may eliminate the need for hard coat anodizing. Deltalloy 4032 is characterized by high strength and a low coefficient of thermal expansion. This datasheet provides information on composition, physical properties, and tensile properties. It also includes information on corrosion and wear resistance as well as machining and surface treatment. Filing Code: AL-347. Producer or source: ALCOA Wire, Rod & Bar Division.


Alloy Digest ◽  
1971 ◽  
Vol 20 (8) ◽  

Abstract REYNOLDS 390 and A390 are hypereutectic aluminum-silicon alloys having excellent wear resistance coupled with good mechanical properties, high hardness, and low coefficients of expansion. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fatigue. It also includes information on high temperature performance and corrosion resistance as well as casting, heat treating, and machining. Filing Code: Al-203. Producer or source: Reynolds Metals Company.


Alloy Digest ◽  
1993 ◽  
Vol 42 (2) ◽  

Abstract DELORO N-6 PM is a nickel-base alloy recommended for handling conditions of wear, erosion, heat and corrosion when impact is also a consideration. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on wear resistance as well as machining and joining. Filing Code: Ni-422. Producer or source: Deloro Stellite Inc.


Alloy Digest ◽  
1953 ◽  
Vol 2 (11) ◽  

Abstract ABK Metal is a nickel-chromium cast iron with excellent wear resistance, recommended for severe abrasive service. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive strength. It also includes information on wear resistance as well as casting, heat treating, machining, and joining. Filing Code: CI-4. Producer or source: American Brake Shoe Company.


Alloy Digest ◽  
1960 ◽  
Vol 9 (2) ◽  

Abstract RED X-20 is a heat treatable hypereutectic aluminum-silicon alloy with excellent wear resistance and a very low coefficient of thermal expansion. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Al-89. Producer or source: Apex Smelting Company.


Sign in / Sign up

Export Citation Format

Share Document