Comparative Study: Classification Algorithms Before and After Using Feature Selection Techniques

Author(s):  
Mona Mohamed Nasr ◽  
◽  
Essam Mohamed Shaaban ◽  
Menna Ibrahim Gabr ◽  
◽  
...  

: In this era of Internet, the issue of security of information is at its peak. One of the main threats in this cyber world is phishing attacks which is an email or website fraud method that targets the genuine webpage or an email and hacks it without the consent of the end user. There are various techniques which help to classify whether the website or an email is legitimate or fake. The major contributors in the process of detection of these phishing frauds include the classification algorithms, feature selection techniques or dataset preparation methods and the feature extraction that plays an important role in detection as well as in prevention of these attacks. This Survey Paper studies the effect of all these contributors and the approaches that are applied in the study conducted on the recent papers. Some of the classification algorithms that are implemented includes Decision tree, Random Forest , Support Vector Machines, Logistic Regression , Lazy K Star, Naive Bayes and J48 etc.


2019 ◽  
Vol 8 (1) ◽  
pp. 42-47
Author(s):  
D. Selvamani ◽  
V. Selvi

The Intrusion Detection System (IDS) can be used broadly for securing the network. Intrusion detection systems (IDS) are typically positioned laterally through former protecting safety automation, like access control and verification, as a subsequent line of resistance that guards data classifications. Feature selection is employed to diminish the number of features in various applications where data has more than hundreds of attributes. Essential or relevant attribute recognition has converted a vital job to utilize data mining algorithms efficiently in today world situations. This article describes the comparative study on the Information Gain, Gain Ratio, Symmetrical Uncertainty, Chi-Square analysis feature selection techniques with different Classification methods like Artificial Neural Network, Naïve Bayes and Support Vector Machine. In this article, different performance metrics has utilized to choose the appropriate Feature Selection method for better data classification in IDS.


Sign in / Sign up

Export Citation Format

Share Document