scholarly journals Fertilizer phosphorus in some Finnish soils

1961 ◽  
Vol 33 (1) ◽  
pp. 131-139 ◽  
Author(s):  
Armi Kaila

In the present paper it is tried to trace the fate of fertilizer phosphorus in soil by comparing the analyses of soils from treated and untreated plots of field trials. This indirect approach cannot be expected to provide exact values, but it is likely to give an approximate answer. The results reported above do not in any marked degree change our present conception of the forms in which fertilizer phosphorus accumulates in soils. In the acid soils studied (pH 4—6.4 in 0.02 N CaCl2) superphosphate tended to increase the fractions which were extracted by NH4F or NaOH. Hyperphosphate phosphorus was mostly found in the acid-soluble fraction. During a longer period of dressing with phosphate an increase in the organic phosphorus content of a peat soil could be detected. In the incubation experiments the mineralization of organic phosphorus occurred at a higher rate in the samples from the plots treated with superphosphate than in those from the untreated one. It might be supposed that the organic phosphorus mineralized mainly originated from the plant residues. It seems that the fractionation method developed by CHANG and JACKSON (4) for the estimation of discrete forms of soil phosphorus is not quite satisfactory for tracing the fertilizer phosphorus in soils recently dressed with phosphates. In particular, it may be fallacious to conclude that the fraction extracted by NH4F would only represent phosphorus bound to aluminium and its compounds. At least in the absence of soil, a large part of phosphorus in dicalcium phosphate dihydrate falls into this fraction, and also a small amount of hyperphosphate phosphorus may be found in it. The test values for »available» phosphorus showed the effect of fertilizers in accordance with previous observations (9, 13). Acetic acid soluble P revealed the treatment with hyperphosphate, but only slightly the application of superphosphate. The test value for the sorbed P of BRAY and KURTZ (2), or phosphorus extracted by 0.03 N NH4F-0.025 N HCI, distinctly indicated the addition of superphosphate, and also to some extent the presence of hyperphosphate phosphorus. Thus, even these results furnish a supplement to the data (11, 19) which prove that acids are not recommendable for the estimation of »available» phosphorus in Finnish soils. Probably, the use of ammonium fluoride would give a more reliable picture, provided, it is on the whole possible to characterize the phosphorus condition of soil with this kind of test values.

1959 ◽  
Vol 31 (1) ◽  
pp. 120-130
Author(s):  
Armi Kaila

The effect on a fen soil of superphosphate applied for 34 years at the annual rates of 0, 100, 200, and 300 kg/ha was studied. The material consisted of samples from a field trial at the Leteensuo Experiment Station. The soil samples from the ploughing layer were collected in autumn 1956, and the hay samples from the crop harvested in 1957. The hay yields from the treatments with 200 or 300 kg/ha of superphosphate were about 7400 kg/ha, and the phosphorus content of the hay 1.69 and 1.85 per cent, respectively. The treatment with 100 kg/ha of superphosphate yielded only about 5100 kg/ha of hay dry matter with a very low phosphorus content, 0.96 per cent. The yield from the untreated plots was almost negligible. Also the biological and chemical soil tests showed that the untreated soil was almost depleted of available phosphorus. The phosphorus conditions in the soil annually treated with 100 kg/ha of superphosphate were not significantly better than in the untreated soil. An annual anplication of 200kg/ha of superphosphate was able to maintain a more satisfactory rate of available phosphorus in the soil, but only the treatment with 300 kg/ha of superphosphate resulted in markedly higher test values than those for the lower treatments. The total phosphorus content of the soil was the higher the larger the amount of superphosphate applied. About 40 to 50 per cent of the differences between the total phosphorus content of the treated and untreated samples was due to organic phosphorus. The potassium content of the hay was the lower the higher the superphosphate treatment. The hay from the treatment with 300 kg/ha of superphosphate contained only 1.25 per cent potassium. The possibility that potassium was a minimum factor in this treatment was discussed.


2012 ◽  
Vol 518-523 ◽  
pp. 4801-4805
Author(s):  
Li Xin Chen ◽  
Wen Biao Duan

Variation in total phosphorus (TP), available phosphorus (AP), the forms of organic phosphorus (OP) and inorganic phosphorus (IP) in rhizosphere soil (RS) and non-rhizosphere soil (NRS) at different development stages in larch (Larix olgensis) plantations was quantitively studied through field investigation, chemical analysis and statistical test. The results indicated that: AP, O-P (occluded phosphate), TP, OP in RS exhibited a significantly or apparently decreased tendency over stand age, but IP, Ca-P (phosphate combined with calcium) and Fe-P (phosphate combined with Ferrum) in RS presented a significantly or apparently increased trend when stand age increased; Ca-P in NRS increased when stand age became larger; Fe-P in half-mature stand (HMS), AP and Fe-P in near mature stand (NMS), AP and Ca-P in mature stand (MS) in NRS was higher than in RS


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Huck Ywih Ch’ng ◽  
Osumanu Haruna Ahmed ◽  
Nik Muhamad Ab. Majid

In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus), and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments.


1961 ◽  
Vol 33 (1) ◽  
pp. 185-193 ◽  
Author(s):  
Armi Kaila

Samples from two field trials were incubated at 20°C for seven months with or without an addition of 1 per cent CaCO3. Both the samples of loam soil and silt soil originated from the surface inch of plots treated with no phosphate, superphosphate or hyperphosphate, resp. It was found that liming did not in any case increase the amount of organic phosphorus mineralized during the incubation. Its effect was observed in the distribution of this phosphorus in the various fractions of inorganic phosphorus. In the distinctly acid samples which were incubated without lime the mineralized phosphorus seemed to accumulate as the ammonium fluoride-soluble and alkali-soluble forms, while in the neutral samples incubated with lime an increase only in the former fraction was detected. When the samples from the hyperphosphate plots were incubated without lime, apparently some apatite of the fertilizer was dissolved and sorbed as the ammonium fluoride soluble or alkali-soluble forms. No decrease in the acid-soluble fraction of these samples incubated with lime did occur.


2018 ◽  
Vol 10 (3) ◽  
pp. 146-150
Author(s):  
LUFITANUR ALFIAH ◽  
DELITA ZUL ◽  
NELVIA NELVIA

Alfiah L, Zul D, Nelvia N. 2018. The effect of combination of indigenous phosphate solubilizing bacteria of Riau, Indonesia on the available phosphorus and phosphorus uptake of soybean. Nusantara Bioscience 10: 146-150. Despite the abundant amount of phosphorus (P) in the soil, P uptake by the plants is very limited. In acidic soil, phosphorus (P) is bound to aluminum (Al) and iron (Fe), whereas in the alkaline soil, phosphorus (P) is bound to calcium (Ca). The improvement of efficiency and availability of P to plants can be made by utilizing a group of solubilizing phosphate microorganisms. Potency test to investigate the P solubility by Phosphate Solubilizing Bacteria (PSB) has been conducted by isolating the bacteria from peat soil at Biosphere Reserves of Giam Siak Kecil Bukit Batu, Riau, Indonesia. The semi-quantitative test revealed that the PSB were able to dissolve Ca3 (PO4)2, FePo4 and phosphate rock. However, the adaptation ability and potency of PSB from indigenous Riau peat soil inoculated into soybean (Glycine max L. Merr) plants in the mineral soil have not yet been investigated. The present study was carried out from March to June 2015 on the alluvial soil in Babussalam Village, Rambah Sub-district, Rokan Hulu District, Riau. The aim of this study was to determine the effect of PSB inoculation on bacterial population and phosphatase activity. The study also aimed to determine the available P and P uptake and their impact on soybean growth and production. The study employed a factorial experiment laid out in a completely randomized design (CRD) consisted of two factors, i.e., soil treatment and PSB. The first factor comprised of two levels, i.e., T0: non-sterilized soil, T1: sterilized soil. The second factor consisted of 4 levels, i.e., B0: without PSB inoculation, B1: inoculation using 2 isolates of PSB (BB_UB6 and BB_K9), B2: inoculation using 3 isolates of PSB (BB_UB6, BB_K9 and BB_K2), and B3: inoculation using 4 isolates of PSB (BB_UB6, BB_K9, BB_K2, and BB_HS13). The results showed that inoculation of starter 3 had the highest phosphatase activity rate of 12.43 μg p NP g-1 hour-1. The highest available P was produced by starter 2, while the P uptake on non-sterilized soil was higher than that on the sterilized soil at 2.63 mg plant-1. PSB inoculation and soil sterilization did not significantly affect the population of phosphate solubilizing bacteria.


2012 ◽  
Vol 204-208 ◽  
pp. 272-278
Author(s):  
Hong Jun Lei ◽  
Xin Liu ◽  
Bei Dou Xi ◽  
Duan Wei Zhu

Phosphorous fractionation is a method developed to estimate sizes of readily soil available P pool, soil P sub-pools and their ability to replenish the available P. Three types of acid soils (1aterite red soil, yellow red soil and brown red soil) were used in pot experiment under a rain-shelter condition to investigate the effect of lime amendment on P fractions and their bioavailability by plant of broad bean. A novel phosphorus fractionation scheme was developed and used to study the phosphorus fractionation of the tested soils compared with the two typical soil phosphorus fractionation schemes, adopting a series of extractants such as 0.25mol L-1 NaHCO3, 1h (for Ca2-P), 0.5mol L-1 NH4F (pH8.5), 1h (for Al-P), 0.7mol L-1 NaClO, pH 8.05, 85°C water bath 30min (for Org-P), 0.1mol L-1 NaOH-0.1Na2CO3, 4h (for Fe-P), 1mol L-1 NaOH, 85°C water bath 1h (for O-Al-P), 0.3 mol L-1 Na-citrate-0.5 g Na2S2O4 -0.5 mol L-1 NaOH, 85°C water bath 15min (for O-Fe-P), 0.25mol L-1 H2SO4, 1h (for Ca10-P). Main results are obtained just as follows: besides Ca2-P, Al-P, Fe-P and O-Fe-P are potentially available phosphorus resource. Although O-P reflects the difference of P between lime and control treatment well, when it appears as a whole, it needs further subdivision to reflect soil phosphorus biologically availability difference better.


Geoderma ◽  
2021 ◽  
Vol 385 ◽  
pp. 114893
Author(s):  
Luciano C. Gatiboni ◽  
Leo M. Condron

1963 ◽  
Vol 43 (1) ◽  
pp. 97-106 ◽  
Author(s):  
R. L. Halstead ◽  
J. M. Lapensee ◽  
K. C. Ivarson

In a laboratory experiment, liming resulted in an average decline of 3.6 per cent in the total organic phosphorus content of incubated surface samples of seven acid soils from eastern Canada. Increases of 2.6 and 5.1 per cent in 1N H2SO4- and 4N HCl-soluble inorganic phosphorus, respectively, and a decrease of 46.4 per cent in NaHCO3-soluble organic phosphorus (pH 8.5) provided further evidence of mineralization of organic phosphorus following liming. There was some evidence, however, that the differences in NaHCO3-soluble organic phosphorus following liming were due only in part to mineralization, since Ca(OH)2 added to a soil just prior to extraction with NaHCO3 had a repressive effect on the solubility of the organic phosphorus compounds.Some mineralization of organic phosphorus occurred when unlimed samples were incubated in the laboratory for 9 months.Marked increases in microbiological activity, as indicated by increased numbers of microorganisms, and increased CO2 and NO3-nitrogen production, were associated with lower values for extractable organic phosphorus following liming. Partial sterilization of samples with toluene lowered biological activity in the unlimed and limed samples. Toluene was found, however, to have a positive effect on release of phosphorus from organic form.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Ali Maru ◽  
Osumanu Ahmed Haruna ◽  
Walter Charles Primus

The excessive use of nitrogen (N) fertilizers in sustaining high rice yields due to N dynamics in tropical acid soils not only is economically unsustainable but also causes environmental pollution. The objective of this study was to coapply biochar and urea to improve soil chemical properties and productivity of rice. Biochar (5 t ha−1) and different rates of urea (100%, 75%, 50%, 25%, and 0% of recommended N application) were evaluated in both pot and field trials. Selected soil chemical properties, rice plants growth variables, nutrient use efficiency, and yield were determined using standard procedures. Coapplication of biochar with 100% and 75% urea recommendation rates significantly increased nutrients availability (especially P and K) and their use efficiency in both pot and field trials. These treatments also significantly increased rice growth variables and grain yield. Coapplication of biochar and urea application at 75% of the recommended rate can be used to improve soil chemical properties and productivity and reduce urea use by 25%.


2018 ◽  
Vol 54 (7) ◽  
pp. 841-852 ◽  
Author(s):  
Kehinde O. Erinle ◽  
Juqi Li ◽  
Ashlea Doolette ◽  
Petra Marschner

Sign in / Sign up

Export Citation Format

Share Document