scholarly journals Effect of incubation and liming on the phosphorus fractions in soil

1961 ◽  
Vol 33 (1) ◽  
pp. 185-193 ◽  
Author(s):  
Armi Kaila

Samples from two field trials were incubated at 20°C for seven months with or without an addition of 1 per cent CaCO3. Both the samples of loam soil and silt soil originated from the surface inch of plots treated with no phosphate, superphosphate or hyperphosphate, resp. It was found that liming did not in any case increase the amount of organic phosphorus mineralized during the incubation. Its effect was observed in the distribution of this phosphorus in the various fractions of inorganic phosphorus. In the distinctly acid samples which were incubated without lime the mineralized phosphorus seemed to accumulate as the ammonium fluoride-soluble and alkali-soluble forms, while in the neutral samples incubated with lime an increase only in the former fraction was detected. When the samples from the hyperphosphate plots were incubated without lime, apparently some apatite of the fertilizer was dissolved and sorbed as the ammonium fluoride soluble or alkali-soluble forms. No decrease in the acid-soluble fraction of these samples incubated with lime did occur.

1965 ◽  
Vol 37 (4) ◽  
pp. 243-254
Author(s):  
Armi Kaila

The effect of liming on the soil phosphorus fractions was studied under the laboratory conditions. 28 samples of mineral soils (pH in 0.01 M CaCl2 suspension 4.0 to 6.0) were incubated with 1 per cent CaCO3 or without lime for six months at about 18—20°C. In an other experiment, six samples (pH from 3.3 to 4.3) were incubated with 0, 0.5, 1, or 2 per cent CaCO3 also for six months. At the end of the incubation period the soil pH in the limed samples of the first experiment ranged from pH 5.9 to pH 7.5, in the second experiment the highest application kept the soil pH at 6.5 to 7.0. In the air-dried samples the content of organic phosphorus and the fractions of inorganic phosphorus were determined, and the increases or decreases due to the incubation and liming were calculated. Incubation without lime brought about decrease in the organic phosphorus content of several samples, and the presence of lime tended to intensify this effect, although only in a few cases the decrease due to liming was statistically significant. Liming also tended to increase the accumulation of NH4F-soluble inorganic phosphorus. The acid-soluble fraction was often increased in the limed samples but not in the unlimed ones. The alkali-soluble fraction was decreased in most soils in the limed samples, while it increased in some of the unlimed ones. In the second experiment the incubation caused marked decrease in the alkali-soluble phosphorus without a corresponding increase in the other phosphorus fractions determined in the subsoil samples. It was concluded that in these experiments the relatively heavy liming in the first place affected the distribution of inorganic phosphorus increasing the NH4F-soluble and acid-soluble forms at the expense of the alkali-soluble fraction. The effect on the mineralization of organic phosphorus seemed to be in most soils of minor importance.


1966 ◽  
Vol 17 (3) ◽  
pp. 303 ◽  
Author(s):  
AJ Rixon

Changes in phosphorus applied as superphosphate to irrigated pastures on a red-brown earth were studied for a 4 year period commencing 1 year after the establishment of the pastures. The pastures consisted of Wimmera ryegrass (Lolium rigidum Gaud.), perennial ryegrass (L. perenne L.), subterranean clover (Trifolium subterraneum L.), and white clover (T. repens L.). Measurements of phosphorus fractions were made on the 0–3 in. soil horizon over this period and, for the final 2 years, on the organic matter layer (mat) which was present on the soil surface under all pastures. The mat was shown to be an important accumulation site for organic phosphorus, as well as for inorganic phosphorus which accumulates from interception of broadcast applications of superphosphate. Of the 155 lb phosphorus per acre added as fertilizer, 82–100% was accounted for principally as increases in the acetic acid-soluble fraction or as organic phosphorus. There were no significant changes in the inorganic phosphorus fraction soluble in sodium hydroxide. It was concluded that the amount of phosphorus converted to the organic form will determine the level for maintenance applications of phosphorus on the irrigated pastures.


2016 ◽  
Vol 37 (6) ◽  
pp. 3915 ◽  
Author(s):  
Jean Sérgio Rosset ◽  
Roni Fernandes Guareschi ◽  
Luiz Alberto Rodrigues da Silva Pinto ◽  
Marcos Gervasio Pereira ◽  
Maria do Carmo Lana

In no-tillage (NT) soils, changes in the quantity and quality of soil organic matter (SOM) have been observed over time. These changes can interfere with the dynamics of P in surface soil layers. Thus, the objectives of this study were: to evaluate the organic and inorganic fractions of P and their degree of lability (labile, moderately labile, and moderately recalcitrant) in an Oxisol under NT for 6 years (NT6), 14 years (NT14), and 22 years (NT22) and cultivated with a succession of soybean and corn/wheat. The fractions were evaluated for 16 years of NT, with the last four years under integrated corn second crop and Brachiaria (NT16+B). We also analyzed an area of native forest, as well as analyzing the correlations between the results of the P fractions of these areas with other attributes such as total carbon content, vegetable waste deposited on the ground, phosphorus and humic fractions remaining in SOM. From each of the areas, samples were collected at 0.00-0.05 m and 0.05-0.10 m. A completely randomized design with 5 replicates was used. Management of phosphorus fertilization and SOM following adoption of the SPD of time (6 to 22 years) increased the levels of all fractions of inorganic P (0.0 to 0.10 m), as well as the fractions of labile (0.05-0.10 m), moderately labile (0.0-0.10 m), and moderately recalcitrant (0.05-0.10 m) organic phosphorus. The correlation matrix shows interactions between the evaluated soil attributes, especially between inorganic phosphorus fractions and fulvic and humic acids and between the moderately recalcitrant organic phosphorus and humin fraction.


1961 ◽  
Vol 33 (1) ◽  
pp. 131-139 ◽  
Author(s):  
Armi Kaila

In the present paper it is tried to trace the fate of fertilizer phosphorus in soil by comparing the analyses of soils from treated and untreated plots of field trials. This indirect approach cannot be expected to provide exact values, but it is likely to give an approximate answer. The results reported above do not in any marked degree change our present conception of the forms in which fertilizer phosphorus accumulates in soils. In the acid soils studied (pH 4—6.4 in 0.02 N CaCl2) superphosphate tended to increase the fractions which were extracted by NH4F or NaOH. Hyperphosphate phosphorus was mostly found in the acid-soluble fraction. During a longer period of dressing with phosphate an increase in the organic phosphorus content of a peat soil could be detected. In the incubation experiments the mineralization of organic phosphorus occurred at a higher rate in the samples from the plots treated with superphosphate than in those from the untreated one. It might be supposed that the organic phosphorus mineralized mainly originated from the plant residues. It seems that the fractionation method developed by CHANG and JACKSON (4) for the estimation of discrete forms of soil phosphorus is not quite satisfactory for tracing the fertilizer phosphorus in soils recently dressed with phosphates. In particular, it may be fallacious to conclude that the fraction extracted by NH4F would only represent phosphorus bound to aluminium and its compounds. At least in the absence of soil, a large part of phosphorus in dicalcium phosphate dihydrate falls into this fraction, and also a small amount of hyperphosphate phosphorus may be found in it. The test values for »available» phosphorus showed the effect of fertilizers in accordance with previous observations (9, 13). Acetic acid soluble P revealed the treatment with hyperphosphate, but only slightly the application of superphosphate. The test value for the sorbed P of BRAY and KURTZ (2), or phosphorus extracted by 0.03 N NH4F-0.025 N HCI, distinctly indicated the addition of superphosphate, and also to some extent the presence of hyperphosphate phosphorus. Thus, even these results furnish a supplement to the data (11, 19) which prove that acids are not recommendable for the estimation of »available» phosphorus in Finnish soils. Probably, the use of ammonium fluoride would give a more reliable picture, provided, it is on the whole possible to characterize the phosphorus condition of soil with this kind of test values.


Author(s):  
Wenli Zhang ◽  
Caibin Li ◽  
Guitong Li ◽  
Qimei Lin ◽  
Xiaorong Zhao ◽  
...  

1963 ◽  
Vol 43 (1) ◽  
pp. 97-106 ◽  
Author(s):  
R. L. Halstead ◽  
J. M. Lapensee ◽  
K. C. Ivarson

In a laboratory experiment, liming resulted in an average decline of 3.6 per cent in the total organic phosphorus content of incubated surface samples of seven acid soils from eastern Canada. Increases of 2.6 and 5.1 per cent in 1N H2SO4- and 4N HCl-soluble inorganic phosphorus, respectively, and a decrease of 46.4 per cent in NaHCO3-soluble organic phosphorus (pH 8.5) provided further evidence of mineralization of organic phosphorus following liming. There was some evidence, however, that the differences in NaHCO3-soluble organic phosphorus following liming were due only in part to mineralization, since Ca(OH)2 added to a soil just prior to extraction with NaHCO3 had a repressive effect on the solubility of the organic phosphorus compounds.Some mineralization of organic phosphorus occurred when unlimed samples were incubated in the laboratory for 9 months.Marked increases in microbiological activity, as indicated by increased numbers of microorganisms, and increased CO2 and NO3-nitrogen production, were associated with lower values for extractable organic phosphorus following liming. Partial sterilization of samples with toluene lowered biological activity in the unlimed and limed samples. Toluene was found, however, to have a positive effect on release of phosphorus from organic form.


2021 ◽  
Author(s):  
Bereket Ayenew Alemu ◽  
Asmare Melese

Abstract Background: In acid soils, soluble inorganic phosphorus is fixed by aluminum and iron, so that phosphorous availability to plant would be inhibited. Thus, an incubation study was conducted to evaluate the effects of lime, vermicompost, and mineral P fertilizer on the distribution of P fractions and oxalate and dithionite extractable aluminum and iron. The treatments consisted of three rates of phosphorous (0, 74.51 and 149.01 kg P ha-1), three rates of vermicompost (0, 5 and 10 ton VC ha-1) and four rates of lime (0, 5.70, 9.20, and 11.50 ton CaCO3 ha-1). The experiment was laid out as a complete randomized design in a factorial arrangement. Results: Combined application of lime, vermicompost and mineral P significantly increased (p<0.05) labile phosphorus fractions and decreased potential sorption capacities of the soil. As the increased soil pH, reduced exchangeable acidity and oxalate extractable Fe and Al the integrated applications of these amendments fixed aluminum and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool compared to sole application of the amendments. Conclusions: Combined applications of lime, vermicompost and inorganic P to acidic soils of Goha-1 in Cheha district could convey enhanced amount of available P and ensures the maintenance of higher levels of labile P. It might also contribute towards meeting crop P requirements.


Sign in / Sign up

Export Citation Format

Share Document