scholarly journals Effects of sodium nitrite treatment on the fermentation quality of red clover-grass silage harvested at two dry matter concentrations and inoculated with clostridia

2019 ◽  
Vol 28 (4) ◽  
Author(s):  
Walter König ◽  
Emilia König ◽  
Kari Elo ◽  
Aila Vanhatalo ◽  
Seija Jaakkola

Legumes are particularly susceptible to clostridial fermentation when ensiled because of their high buffering capacity and water-soluble carbohydrate contents. The aim of the study was to investigate if a sodium nitrite treatment (900 g t-1 herbage in fresh matter [FM]) impairs butyric acid fermentation of red clover-timothy-meadow fescue silage compared with formic acid-treated (4 l t-1 FM) and untreated silage. The sward was harvested after wilting at low dry matter (DM) (LDM, 194 g kg-1) and high DM (HDM, 314 g kg-1) concentrations and half of the herbage batches were inoculated with Clostridium tyrobutyricum spores before additive treatments. No butyric acid fermentation was observed in HDM silages probably because of the relatively high DM and nitrate contents of the herbage mixture. In LDM silage butyric acid was detected only in formic acid-treated silage, and the number of clostridia copies was higher in formic acid-treated than in sodium nitrite treated silage. Sodium nitrite treatment was superior to FA treatment in suppressing clostridial fermentation in the LDM silages.


1966 ◽  
Vol 66 (3) ◽  
pp. 351-357 ◽  
Author(s):  
W. Ellis Davies ◽  
G. ap Griffith ◽  
A. Ellington

The primary growth of eight varieties of three species–white clover (3), red clover (4) and lucerne (1)–was sampled at fortnightly intervals and the percentage dry matter, in vitro digestibility, crude protein, water soluble carbohydrates, P, Ca, K, Na and Mg were determined.Differences between species were nearly always significant and the general order of merit was white clover, red clover and lucerne. The exceptions were for dry-matter percentage where this order was reversed, and red clover had the lowest Na and highest Mg content.



1997 ◽  
Vol 64 (1) ◽  
pp. 25-36 ◽  
Author(s):  
T. W. J. Keady ◽  
J. J. Murphy

AbstractA randomized block design experiment involving 64 lactating dairy cattle was carried out to evaluate a bacterial inoculant and two rates of formic acid as silage additives. Herbage from the primary growth of a predominantly perennial ryegrass sward was ensiled unwilted using two precision-chop harvesters. Alternate loads of herbage were either untreated (UT) or treated with formic acid applied at the rate of 2·7 l/t grass (LF) and 5·7 l/t grass (HF) or an inoculant enzyme preparation applied at the rate of 2·2 l/t grass (I). The mean dry matter (DM) and water-soluble carbohydrate (WSC) concentrations and buffering capacity of the UT herbage were 148 g/kg, 151 g/kg DM and 638 mEq/kg DM. Inoculant treatment had no effect on the rate of silage fermentation post ensiling relative to the UT silage whereas HF treatment produced a restricted fermented silage. For silages UT, LF, I and HF, pH values were 4·53, 3·89, 4·32 and 4·05 (s.e.d. = 0·061); ammonia nitrogen (N) concentrations were 179, 89, 150 and 73 g/kg total N (s.e.d. = 10·4); butyrate concentrations were 6·0,1·9, 5·1 and 2·0 g/kg DM (s.e.d. = 1·24); and WSC concentrations were 14·4, 35·2, 18·0 and 100·7 g/kg DM (s.e.d. = 1·24), respectively. The silages were offeredad libitum. The UT silage was supplemented with either 2 (UT2), 4 (UT4) or 6 (UT6) kg concentrates per head daily while the LF, I and HF silages were supplemented with 4 kg (LF4,14, HF4) of concentrates. For treatments UT4, LF4, 14 and HF4, silage DM intakes were 9·69, 10·89, 9·93 and 10·89 (average s.e.d. = 0·465) kg/day; fat plus protein yields 1·39,1·44,1·32 and 1·49 (average s.e.d. = 0·057) kg/day; protein concentrations 29·2, 31·1, 29·9 and 30·2 (average s.e.d. = 1·01) g/kg. Inoculant treatment increased N apparent digestibility (P < 0·05) of the total diets relative to UT. The apparent digestibilities of neutral-detergent fibre (P < 0·05) and hemicellulose (P < 0·01) were decreased due to HF treatment. For the production of a constant milk fat plus protein yield it was estimated that an extra 0·63 kg per head per day and 1·04 and 1·77 kg per head per day less concentrate would be required for the I, LF and HF treatments, respectively. It is concluded that relative to the UT treatment, I treatment had no beneficial effects on silage fermentation, total diet apparent digestibility (other than N apparent digestibility) or animal performance. The LF treatment improve lage fermentation and intake, and tended to increase the yield of fat plus protein (P > 0·05) whereas HF treatment restricted silage preservation and increased silage intake and the yields of protein and fat plus protein.



2020 ◽  
Vol 8 (17) ◽  
pp. 6713-6721 ◽  
Author(s):  
Xian Cui ◽  
Hui Sun ◽  
Mostafa Sobhi ◽  
Xinxin Ju ◽  
Jianbin Guo ◽  
...  


BioResources ◽  
2017 ◽  
Vol 12 (2) ◽  
Author(s):  
Guanghong Luo ◽  
Ling Zhang ◽  
Tianren Chen ◽  
Wenqiao Yuan ◽  
Yingxi Geng


2018 ◽  
Vol 58 (6) ◽  
pp. 1043 ◽  
Author(s):  
A. Jonker ◽  
G. Molano ◽  
E. Sandoval ◽  
P. S. Taylor ◽  
C. Antwi ◽  
...  

Elevated water-soluble carbohydrate (WSC) concentration in the diet may affect rumen fermentation and consequently reduce methane (CH4) emissions. The objective of the present study was to determine CH4 emissions from male sheep (8 per treatment) in respiration chambers for 48 h and fed either a conventional diploid (CRG), a high-sugar diploid (HSG) or a tetraploid (TRG) perennial ryegrass cultivar, each offered at 0.7 or 1.0 kg dry matter (DM)/day during periods in early spring 2013 (P1), early autumn 2014 (P2) and late spring 2014 (P3). There was a significant (P < 0.001) interaction between cultivar and period for CH4 yield (g/kg DM intake). In P1 yield was 9% lower (P = 0.007) for sheep fed HSG than for sheep fed CRG or TRG, in P2 yield was 16% lower (P < 0.001) for sheep fed TRG than that for sheep fed CRG or HSG, and in P3 yield was 15% lower (P < 0.001) for sheep fed TRG than that for sheep fed CRG, with HSG-fed sheep being intermediate and not significantly different from either CRG or TRG. Despite there being a cultivar × period interaction, overall, CH4 yield was lower for sheep fed HSG or TRG than for sheep fed CRG (P < 0.001). There were no cultivar × level of feed offer interactions and, overall, yield of CH4 was 9% higher (P = 0.003) for sheep offered 0.7 than for sheep offered 1.0 kg DM/day. In each period, one or other of the high-WSC diploid (HSG) or tetraploid cultivars (TRG) gave lower CH4 yields than did the control diploid (CRG), suggesting that CH4 yield is reduced by characteristics of these cultivars. However, the effect was not consistently associated with either cultivar and could not be attributed to higher forage water-soluble carbohydrate concentrations.



Author(s):  
Maikon Figueredo Lemos ◽  
Alexandre Carneiro Leão de Mello ◽  
Adriana Guim ◽  
Márcio Vieira da Cunha ◽  
Pedro Henrique Ferreira da Silva ◽  
...  

Abstract: The objective of this work was to evaluate the nutritional value of silages from tall-sized and dwarf elephant grass (Pennisetum purpureum) genotypes, intercropped or not with butterfly pea (Clitoria ternatea). The experiment was performed in randomized complete blocks, in a 4x2 factorial arrangement (four genotypes × two cropping systems). The genotypes intercropped or not with butterfly pea were: IRI-381 and Elephant B, tall sized; and Taiwan A-146 2.37 and Mott, dwarf. Forage was harvested 60 days after regrowth. In the silage from Mott grass intercropped with butterfly pea, lower contents of lignin (78.1 g kg-1), neutral detergent fiber (636.0 g kg-1), and neutral detergent insoluble protein (13.15 g kg-1), besides a greater dry matter recovery (873.3 g kg-1), were observed. The silage from Taiwan A-146 2.37 intercropped with the legume showed a greater crude protein content (136.1 g kg-1). In both silages, the ammonia nitrogen contents were quite reduced (26.4 g kg-1). However, greater residual water-soluble carbohydrate contents were observed in the silages from the intercrop (1.85 mg g-1) and from the Mott grass monocrop (1.51 mg g-1). Moreover, there was a lower in vitro dry matter digestibility (676.7 g kg-1) for the silage from the intercrop. Dwarf genotypes increase the nutritional value of elephant grass silage, compared with the tall-sized ones. Intercropping with butterfly pea improves silage fermentation characteristics, despite reducing its digestibility. Therefore, the ensilage of dwarf Mott elephant grass intercropped with butterfly pea shows more promising results.



Author(s):  
J R Weddell

Studies with beef cattle (Kennedy and Carson, 1991) and dairy cattle (Chamberlain et al, 1990) have shown responses in dry matter intake of silage and animal performance through applying Maxgrass silage additive to unwilted herbage ensiled in clamps. Maxgrass (BP Chemicals Ltd) contains (weight/volume) 68% ammonium hexamethanoate, 11% ammonium hexapropanoate and 2% octanoic acid.Research at Aberdeen has shown the benefits of using both inoculant (Weddell, 1990a) and formic acid based (Weddell, 1990b) additives on big bale silage which now constitutes around 15% of the total silage dry matter ensiled in the UK. The present study compared the effects on silage composition, animal performance and storage losses of Maxgrass treated with untreated big bale silage.Second cut perennial ryegrass herbage was wilted to a mean DM content of 230 g/kg then baled by fixed chamber baler. Mean water soluble carbohydrate was 100 g/kg DM. Alternate groups of six bales were left untreated or treated with Maxgrass silage additive at 7.4 1/tonne wilted grass.



1960 ◽  
Vol 38 (2) ◽  
pp. 201-216 ◽  
Author(s):  
Wm. Harold Minshall

Extension growth of the chlorophyll-containing roots of Hydrocharis morsusranae was inhibited by 0.5 p.p.m. of 3-(4-chlorophenyl)-1,1-dimethylurea (monuron) whereas concentrations close to the water saturation point of 230 p.p.m. were required to inhibit extension growth of the non-chlorophyll-containing attached roots of Zea mays and Phleum pratense and the detached roots of Pisum sativum.A total of 15–20 μg of monuron per gram fresh leaf applied through the cut petiole of detached primary leaves of Phaseolus vulgaris inhibited the increase of dry matter by 90% and suppressed transpiration 40–50%. Internal concentrations of 1–2 μg/g of monuron produced simultaneous enhancement of dry matter increase and of transpiration but concentrations of 5–10 μg/g produced a suppression of dry matter increase concurrently with an enhancement of transpiration. Age of leaf and the time of year in which the plants were grown altered the critical internal concentration levels required to affect dry matter increase and transpiration.Analysis of detached leaves treated with 15–20 μg/g monuron indicated a marked suppression of the formation of non-water-soluble carbohydrate, a slight suppression of the formation of water-soluble nitrogen, but little or no effect on water-soluble carbohydrate or on non-water-soluble nitrogen.In detached leaves o-phenanthroline, 3-phenyl-1,1-dimethylurea, and 3-(3,4-dichlorophenyl)-1,1-dimethylurea resembled monuron closely in symptom development and in their effect on dry matter production and transpiration. Iodoacetamide, 2,4-dinitrophenol, and 8-hydroxyquinoline each produced some effects similar to monuron but differed from it in certain respects; Thiourea, sodium diethyldithiocarbamate, sodium fluoracetate, ethyl-NN-diphenylcarbamate, and hydroxylamine hydrochloride were without noticeable effect.





Sign in / Sign up

Export Citation Format

Share Document