Improving Monitoring of Radiation Pulses at the Industrial Facilities

Author(s):  
N.N. Morozov ◽  
◽  
L.R. Sharifullina ◽  
A.R. Manaeva ◽  
◽  
...  

In case of accidents at the industrial facilities, where there are devices that are a source of ionizing radiation, a significant part of the fission products is in a vaporous and aerosol state. There is no sharp drop in the radiation levels, which means that the terrain can be damaged for a long time and become uninhabitable. To assess the damage and eliminate the consequences of exposure to a hard radiation pulse, it is required to have such systems that register the dose fields in real time with a high temporal resolution and do not require regular verification and reference to the reference fields. To solve the problem, it is proposed to measure the dose rate of pulsed radiation by the induced conductivity in the air. This makes it possible to obtain the absolute values of the dose rate without reference to the reference fields, with a time resolution of 1·108 per second. The relationship between conductivity of the ionized air and the dose rate is given by means of experimentally determined constants: mobility of the electrons in the air and the lifetime of electrons before they stick to oxygen molecules in the air considering participation of the third particle. Proposed method is based on the microwave sounding of the highly ionized air. This allows to significantly expand the range of application of the ionization methods up to 1·108 Sv/s for photon radiation and to provide nanosecond time resolution. In the present experiments, the time dependence of the dose rate on time obtained by high-frequency probing was measured, and the dose per pulse was found by integrating over time. Measurement results were compared with the readings of a certified integral thermoluminescent dosimeter based on LiF. Measurement results indicate agreement within 20–30 %. High-frequency detectors can be used as part of information and measurement systems to alert about possible emergencies. The method allows obtaining final information in real time and forming management teams on mitigation of emergency situations consequences.

Author(s):  
Jatin K Pradhan ◽  
Arun Ghosh

It is well known that linear time-invariant controllers fail to provide desired robustness margins (e.g. gain margin, phase margin) for plants with non-minimum phase zeros. Attempts have been made in literature to alleviate this problem using high-frequency periodic controllers. But because of high frequency in nature, real-time implementation of these controllers is very challenging. In fact, no practical applications of such controllers for multivariable plants have been reported in literature till date. This article considers a laboratory-based, two-input–two-output, quadruple-tank process with a non-minimum phase zero for real-time implementation of the above periodic controller. To design the controller, first, a minimal pre-compensator is used to decouple the plant in open loop. Then the resulting single-input–single-output units are compensated using periodic controllers. It is shown through simulations and real-time experiments that owing to arbitrary loop-zero placement capability of periodic controllers, the above decoupled periodic control scheme provides much improved robustness against multi-channel output gain variations as compared to its linear time-invariant counterpart. It is also shown that in spite of this improved robustness, the nominal performances such as tracking and disturbance attenuation remain almost the same. A comparison with [Formula: see text]-linear time-invariant controllers is also carried out to show superiority of the proposed scheme.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3955
Author(s):  
Jung-Cheng Yang ◽  
Chun-Jung Lin ◽  
Bing-Yuan You ◽  
Yin-Long Yan ◽  
Teng-Hu Cheng

Most UAVs rely on GPS for localization in an outdoor environment. However, in GPS-denied environment, other sources of localization are required for UAVs to conduct feedback control and navigation. LiDAR has been used for indoor localization, but the sampling rate is usually too low for feedback control of UAVs. To compensate this drawback, IMU sensors are usually fused to generate high-frequency odometry, with only few extra computation resources. To achieve this goal, a real-time LiDAR inertial odometer system (RTLIO) is developed in this work to generate high-precision and high-frequency odometry for the feedback control of UAVs in an indoor environment, and this is achieved by solving cost functions that consist of the LiDAR and IMU residuals. Compared to the traditional LIO approach, the initialization process of the developed RTLIO can be achieved, even when the device is stationary. To further reduce the accumulated pose errors, loop closure and pose-graph optimization are also developed in RTLIO. To demonstrate the efficacy of the developed RTLIO, experiments with long-range trajectory are conducted, and the results indicate that the RTLIO can outperform LIO with a smaller drift. Experiments with odometry benchmark dataset (i.e., KITTI) are also conducted to compare the performance with other methods, and the results show that the RTLIO can outperform ALOAM and LOAM in terms of exhibiting a smaller time delay and greater position accuracy.


Queue ◽  
2020 ◽  
Vol 18 (6) ◽  
pp. 37-51
Author(s):  
Terence Kelly

Expectations run high for software that makes real-world decisions, particularly when money hangs in the balance. This third episode of the Drill Bits column shows how well-designed software can effectively create wealth by optimizing gains from trade in combinatorial auctions. We'll unveil a deep connection between auctions and a classic textbook problem, we'll see that clearing an auction resembles a high-stakes mutant Tetris, we'll learn to stop worrying and love an NP-hard problem that's far from intractable in practice, and we'll contrast the deliberative business of combinatorial auctions with the near-real-time hustle of high-frequency trading. The example software that accompanies this installment of Drill Bits implements two algorithms that clear combinatorial auctions.


2017 ◽  
Vol 17 (19) ◽  
pp. 6167-6174
Author(s):  
Didem Tekgun ◽  
Wasi Uddin ◽  
Kye-Shin Lee ◽  
Yilmaz Sozer

Author(s):  
Glenn Abramczyk ◽  
James Shuler ◽  
Steven J. Nathan ◽  
Allen C. Smith

The Small Gram Quantity (SGQ) concept is based on the understanding that small amounts of hazardous materials, in this case radioactive materials, are significantly less hazardous than large amounts of the same materials. The essential functional requirements for RAM packaging are containment of the material, ensuring sub-criticality, and ensuring that the radiation hazard of the package, as represented by the radiation dose for the package, is within the regulatory limits. Knowledge of the composition of the material being shipped is also required. By placing the contents in a containment vessel which is helium leaktight, and limiting the mass so that subcriticality is ensured, the first two requirements are readily met. Some materials emit sufficiently strong photon radiation that a small amount of material can yield a large dose rate. Foreknowledge of the dose rate which will be present for a proposed content is a challenging issue for the SGQ approach. Issues associated with certification for several cases of contents which fall within the SGQ envelop are discussed.


2017 ◽  
Vol 97 (4) ◽  
pp. 858-865 ◽  
Author(s):  
Takayuki Nose ◽  
Masashi Chatani ◽  
Yuki Otani ◽  
Teruki Teshima ◽  
Shinichirou Kumita

Author(s):  
Andrew Peekema ◽  
Daniel Renjewski ◽  
Jonathan Hurst

The control system of a highly dynamic robot requires the ability to respond quickly to changes in the robot’s state. This type of system is needed in varying fields such as dynamic locomotion, multicopter control, and human-robot interaction. Robots in these fields require software and hardware capable of hard real-time, high frequency control. In addition, the application outlined in this paper requires modular components, remote guidance, and mobile control. The described system integrates a computer on the robot for running a control algorithm, a bus for communicating with microcontrollers connected to sensors and actuators, and a remote user interface for interacting with the robot. Current commercial solutions can be expensive, and open source solutions are often time consuming. The key innovation described in this paper is the building of a control system from existing — mostly open source — components that can provide realtime, high frequency control of the robot. This paper covers the development of such a control system based on ROS, OROCOS, and EtherCAT, its implementation on a dynamic bipedal robot, and system performance test results.


Sign in / Sign up

Export Citation Format

Share Document