scholarly journals Enhanced Fusion Mechanisms Towards Synthesizing Superheavy Elements

2021 ◽  
Vol 6 (1) ◽  
pp. 19-30
Author(s):  
Nelson Enrique Bolivar ◽  
Ivaylo T. Vasilev

In nature all of the heavy elements are produced by nuclear fusion reactions, mostly in supernova explosions and neutron star collisions, so, this is to date the only known and proven mechanism to produce heavy elements in usable quantities. In this work we approach a difficult challenge, namely, the possibility of fusion of heavy elements, taking as a test case the heaviest observationally stable element - ²³⁸U, showing that it is feasible, at least in principle with the help of existing technologies. The main idea behind is to show that fusion of lighter - than z=184 - nuclei is conceptually viable examining the tunnel effect assisted by an auxiliary field that will produce a Sauter like effect, and this is the pathway to explore the synthesis of elements higher than z=118. The production of theoretical untested elements like Unoctquadium-184 or close Z species could open a new chapter in the physics of super-heavy elements, and leads to a deeper understanding of nuclear decay channels and stability conditions. Nuclear fusion of heavy elements will open the breach to produce neutron rich elements, so we may obtain a deep insight into the physics of the island of stability. This work will review basic aspects of fusion physics related to the assisted fusion mechanism. An enhanced fusion perspective is found generalizing the work of [1] to space dependent fields and the cases of ²H, ¹⁰⁶Pd and ²³⁸U are presented for several test fields. A final section reviewing laser confinement fusion actual experiments capable of achieving the required energies is also reported.

1990 ◽  
Vol 160 (8) ◽  
pp. 47-103 ◽  
Author(s):  
Leonid I. Men'shikov ◽  
L.N. Somov

Engevista ◽  
2017 ◽  
Vol 19 (5) ◽  
pp. 1496
Author(s):  
Relly Victoria Virgil Petrescu ◽  
Raffaella Aversa ◽  
Antonio Apicella ◽  
Florian Ion Petrescu

Despite research carried out around the world since the 1950s, no industrial application of fusion to energy production has yet succeeded, apart from nuclear weapons with the H-bomb, since this application does not aims at containing and controlling the reaction produced. There are, however, some other less mediated uses, such as neutron generators. The fusion of light nuclei releases enormous amounts of energy from the attraction between the nucleons due to the strong interaction (nuclear binding energy). Fusion it is with nuclear fission one of the two main types of nuclear reactions applied. The mass of the new atom obtained by the fusion is less than the sum of the masses of the two light atoms. In the process of fusion, part of the mass is transformed into energy in its simplest form: heat. This loss is explained by the Einstein known formula E=mc2. Unlike nuclear fission, the fusion products themselves (mainly helium 4) are not radioactive, but when the reaction is used to emit fast neutrons, they can transform the nuclei that capture them into isotopes that some of them can be radioactive. In order to be able to start and to be maintained with the success the nuclear fusion reactions, it is first necessary to know all this reactions very well. This means that it is necessary to know both the main reactions that may take place in a nuclear reactor and their sense and effects. The main aim is to choose and coupling the most convenient reactions, forcing by technical means for their production in the reactor. Taking into account that there are a multitude of possible variants, it is necessary to consider in advance the solutions that we consider them optimal. The paper takes into account both variants of nuclear fusion, and cold and hot. For each variant will be mentioned the minimum necessary specifications.


Author(s):  
H. Azechi ◽  
N. Miyanaga ◽  
T. Yamanaka ◽  
R. O. Stapf ◽  
K. Itoga ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document