scholarly journals Selection Selection of Probabilistic Model of Extreme Floods in Benue River Basin, Nigeria

2021 ◽  
Vol 6 (1) ◽  
pp. 7-18
Author(s):  
Itolima Ologhadien

The selection of optimum probabilistic model of extreme floods as a crucial step for flood frequency analysis has remained a formidable challenge for the scientific and engineering communities to address. Presently, there is no scientific consensus about the choice of probability distribution model that would accurately simulate flood discharges at a particular location or region. In practice, several probability distributions are evaluated, and the optimum distribution is then used to establish the design quantile - probability relationship. This paper presents the evaluation of five probability distributions models; Gumbel (EV1), 2-parameter lognormal (LN2), log Pearson type III (LP3), Pearson type III(PR3), and Generalized Extreme Value (GEV) using the method of moments (MoM) for parameter estimation and annual maximum series of four hydrological stations in Benue River Basin in Nigeria. Additionally, Q-Q plots were used to compliment the selection process. The choice of optimum probability distribution model was based on five statistical goodness – of – fit measures; modified index of agreement (Dmod), relative root mean square error (RRMSE), Nash – Sutcliffe efficiency (NSE), Percent bias (PBIAS), ratio of RMSE and standard deviation of the measurement (RSR). Goodness – of – fit assessment reveals that GEV is the best – fit distribution, seconded by PR3 and thirdly, LP3. In comparison with WMO (1989) survey of countries on distribution types currently in use for frequency analysis of extremes of floods shows that GEV is standard in one country, while PR3 is a standard in 7 countries, and LP3 is standard in 7 countries. It is recommended that GEV, PR3 and LP3 should be considered in the final selection of optimum probability distribution model in Nigeria.

2021 ◽  
Vol 6 (2) ◽  
pp. 107-117
Author(s):  
Itolima Ologhadien

The choice of optimum probability distribution model that would accurately simulate flood discharges at a particular location or region has remained a challenging problem to water resources engineers. In practice, several probability distributions are evaluated, and the optimum distribution is then used to establish the quantile - probability relationship for planning, design and management of water resources systems, risk assessment in flood plains and flood insurance. This paper presents the evaluation of five probability distributions models: Gumbel (EV1), 2-parameter lognormal (LN2), log pearson type III (LP3), Pearson type III(PR3), and Generalised Extreme Value (GEV) using the method of moments (MoM) for parameter estimation and annual maximum series of five hydrological stations in the lower Niger River Basin in Nigeria. The choice of optimum probability distribution model was made on five statistical goodness – of – fit measures; modified index of agreement (Dmod), relative root mean square error (RRMSE), Nash – Sutcliffe efficiency (NSE), Percent bias (PBIAS), ratio of RMSE and standard deviation of the measurement (RSR), and probability plot correlation coefficient (PPCC). The results show that GEV is the optimum distribution in 3 stations, and LP3 in 2 stations. On the overall GEV is the best – fit distribution, seconded by PR3 and thirdly, LP3. Furthermore, GEV simulated discharges were in closest agreement with the observed flood discharges. It is recommended that GEV, PR3 and LP3 should be considered in the final selection of optimum probability distribution model in Nigeria.


2016 ◽  
Vol 11 (1) ◽  
pp. 432-440 ◽  
Author(s):  
M. T. Amin ◽  
M. Rizwan ◽  
A. A. Alazba

AbstractThis study was designed to find the best-fit probability distribution of annual maximum rainfall based on a twenty-four-hour sample in the northern regions of Pakistan using four probability distributions: normal, log-normal, log-Pearson type-III and Gumbel max. Based on the scores of goodness of fit tests, the normal distribution was found to be the best-fit probability distribution at the Mardan rainfall gauging station. The log-Pearson type-III distribution was found to be the best-fit probability distribution at the rest of the rainfall gauging stations. The maximum values of expected rainfall were calculated using the best-fit probability distributions and can be used by design engineers in future research.


2021 ◽  
Vol 3 (1) ◽  
pp. 16-25
Author(s):  
Siti Mariam Norrulashikin ◽  
Fadhilah Yusof ◽  
Siti Rohani Mohd Nor ◽  
Nur Arina Bazilah Kamisan

Modeling meteorological variables is a vital aspect of climate change studies. Awareness of the frequency and magnitude of climate change is a critical concern for mitigating the risks associated with climate change. Probability distribution models are valuable tools for a frequency study of climate variables since it measures how the probability distribution able to fit well in the data series. Monthly meteorological data including average temperature, wind speed, and rainfall were analyzed in order to determine the most suited probability distribution model for Kuala Krai district. The probability distributions that were used in the analysis were Beta, Burr, Gamma, Lognormal, and Weibull distributions. To estimate the parameters for each distribution, the maximum likelihood estimate (MLE) was employed. Goodness-of-fit tests such as the Kolmogorov-Smirnov, and Anderson-Darling tests were conducted to assess the best suited model, and the test's reliability. Results from statistical studies indicate that Burr distributions better characterize the meteorological data of our research. The graph of probability density function, cumulative distribution function as well as Q-Q plot are presented.


Author(s):  
Itolima Ologhadien

Flood frequency analysis is a crucial component of flood risk management which seeks to establish a quantile relationship between peak discharges and their exceedance (or non-exceedance) probabilities, for planning, design and management of infrastructure in river basins. This paper evaluates the performance of five probability distribution models using the method of moments for parameter estimation, with five GoF-tests and Q-Q plots for selection of best –fit- distribution. The probability distributions models employed are; Gumbel (EV1), 2-parameter lognormal (LN2), log Pearson type III (LP3), Pearson type III(PR3), and Generalised Extreme Value( GEV). The five statistical goodness – of – fit tests, namely; modified index of agreement (Dmod), relative root mean square error (RRMSE), Nash – Sutcliffe efficiency (NSE), Percent bias (PBIAS), ratio of RMSE and standard deviation of the measurement (RSR) were used to identify the most suitable distribution models. The study was conducted using annual maximum series of nine gauge stations in both Benue and Niger River Basins in Nigeria. The study reveals that GEV was the best – fit distribution in six gauging stations, LP3 was best – fit distribution in two gauging stations, and PR3 is best- fit distribution in one gauging station. This study has provided a significant contribution to knowledge in the choice of distribution models for predicting extreme hydrological events for design of water infrastructure in Nigeria. It is recommended that GEV, PR3 and LP3 should be considered in the development of regional flood frequency using the existing hydrological map of Nigeria.


2019 ◽  
Vol 1 (12) ◽  
Author(s):  
Mahmood Ul Hassan ◽  
Omar Hayat ◽  
Zahra Noreen

AbstractAt-site flood frequency analysis is a direct method of estimation of flood frequency at a particular site. The appropriate selection of probability distribution and a parameter estimation method are important for at-site flood frequency analysis. Generalized extreme value, three-parameter log-normal, generalized logistic, Pearson type-III and Gumbel distributions have been considered to describe the annual maximum steam flow at five gauging sites of Torne River in Sweden. To estimate the parameters of distributions, maximum likelihood estimation and L-moments methods are used. The performance of these distributions is assessed based on goodness-of-fit tests and accuracy measures. At most sites, the best-fitted distributions are with LM estimation method. Finally, the most suitable distribution at each site is used to predict the maximum flood magnitude for different return periods.


2009 ◽  
Vol 1 (1) ◽  
pp. 50-52
Author(s):  
Abhijit Bhuyan ◽  
Munindra Borah

In this study our main objective is to determine the best fitting probability distribution for annual maximum flood discharge data of river Kopili, Assam. Various probability distributions i.e. Gumbel (G), generalized extreme value (GEV), normal (N), log-normal (LN3), generalized logistic (GLO), generalized pareto (GPA) and Pearson type-III (PE3) have been used for our study. The L-moments methods have been used for estimating the parameters of all the distributions. The root mean square error (RMSE), model efficiency and D-index (fit in the top six values) together with L-moment ratio diagram is used for goodness of fit measure. It has been observed that Generalized Pareto is the best fitting probability distribution for annual maximum discharge data of river Kopili.


Author(s):  
A. I. Agbonaye ◽  
O. C. Izinyon

Rainfall frequency analysis is the estimation of how often rainfall of specified magnitude will occur. Such analyses are helpful in defining policies relating to water resources management. It serves as the source of data for flood hazard mitigation and the design of hydraulic structures aimed at reducing losses due to floods action. In this study rainfall frequency analysis for three (3) cities in South Eastern Nigeria were carried out using annual maximum series of daily rainfall data for the stations. The objective of the study was to select the probability distribution model from among six commonly used probability distribution models namely: Generalized Extreme value distribution (GEV), Extreme value type I distribution (EVI), Generalized Pareto distribution (GPA), Pearson Type III (PIII), log Normal (LN) and Log Pearson Type III (LP111) distributions. These distributions were applied to annual maximum series of daily precipitation data at each station using the parameters of the distributions estimated by the method of moments. The best fit probability distribution model at each location was selected based on the results of seven goodness of fit tests entry: root mean square error (RMSE), relative root mean square error (RRMSE), mean absolute deviation index (MADI) and probability plot correlation coefficient (PPCC), Maximum Absolute Error (MAE), Chi square test and D- Index and a scoring and ranking scheme. Our results indicate that the best fit probability distribution model at all study locations is GEV and this was used to forecast rainfall return values for the stations for return periods of between 5years and 500years. The values obtained are useful for planning, design and management of hydraulic structures for flood mitigation and prevention of flood damage at the location.


2021 ◽  
Author(s):  
Shobhit Singh ◽  
Somil Swarnkar ◽  
Rajiv Sinha

<p>Floods are one of the worst natural hazards around the globe and around 40% of all losses worldwide due to natural hazard have been caused by floods since 1980s. In India, more than 40 million hectares of area are affected by floods annually which makes it one of the worst affected country in the world. In particular, the Ganga river basin in northern India which hosts nearly half a billion people, is one of the worst floods affected regions in the country. The Ghaghra river is one of the highest discharge-carrying tributaries of the Ganga river, which originates from High Himalaya. Despite severally affected by floods each year, flood frequencies of the Ghaghra river are poorly understood, making it one of the least studied river basins in the Ganga basin. It is important to note that, like several other rivers in India, the Ghaghra also has several hydrological stations where only stage data is available, and therefore traditional flood frequency analysis using discharge data becomes difficult. In this work, we have performed flood frequency analysis using both stage and discharge dataset at three different gauge stations in the Ghaghra river basin to compare the results using statistical methods. The L-moment analysis is applied to assess the probability distribution for the flood frequency analysis. Further, we have used the TanDEM-x 90m digital elevation model (DEM) to map the flood inundation regions. Our results suggest the Weibull is statistically significant distribution for the discharge dataset. However, stage above danger level (SADL) follows General Pareto (GP3) and Generalized Extreme Value (GEV) distributions. The quantile-quantile plot analysis suggests that the SADL probability distributions (GP3 and GEV) are closely following the theoretical probability distributions. However, the discharge distribution (Weibull) is showing a relatively weak corelation with the theoretical probability distribution. We further used the probability distribution to assess the SADL frequencies at 5-, 10-, 20-, 50- and 100-year return periods. The magnitudes of SADL at different return periods were then used to map the water inundation areas around different gauging stations. These inundation maps were cross-validated with the globally available flooding extent maps provided by Dartmouth flood observatory. Overall, this work exhibits a simple and novel technique to generate inundation maps around the gauging locations without using any sophisticated hydraulics models.</p>


2020 ◽  
Author(s):  
Hyunjun Ahn ◽  
Sunghun Kim ◽  
Joohyung Lee ◽  
Jun-Haeng Heo

<p>In the extremes hydrology field, it is essential to find the probability distribution model that is most appropriate for the sample data to estimate the reasonable probability quantile. Depending on the assumed probability distribution model, the probability quantile could be estimated with quite different values. The probability plot correlation coefficient (PPCC) test is one of the goodness-of-fit tests for finding suitable probability distributions for a given sample. The PPCC test determines whether assumed probability distributions are acceptable for the sample data using correlation coefficients between sample data and theoretical quantiles of assumed probability distributions. The critical values for identification are presented as a two-dimensional table, depending on the sample size and the shape parameters of models, for a three-parameter probability distribution. In this study, the applicability and utility of machine learning in the hydrology field were examined. For the usability of the PPCC test, a regression equation was derived using a machine learning algorithm with two variables: sample size and shape parameter.</p>


Sign in / Sign up

Export Citation Format

Share Document