scholarly journals α-Glucosidase Inhibitory and Antiradical Properties of Acacia macrostachya

Author(s):  
Hamidou Têeda Ganamé ◽  
Yssouf Karanga ◽  
Ousmane Ilboudo ◽  
Wende-Konté Hazael Conania Nikiema ◽  
Richard Wamtinga Sawadogo ◽  
...  

In this work, the anti-diabetic activity of three extracts of Acacia macrostachya was investigated by following the inhibitory effect of these extracts on -glucosidase using the in vitro model. The antiradical activity of these extracts was also determined. Methanol extracts of root and stem barks showed a very significant inhibitory effect against the enzyme activity of -glucosidase with IC50 2.487 ± 0.441 µg/mL and 1.650 ± 0.229 µg/mL respectively. For antiradical activity, the same extracts presented the highest scavenging of the radical DPPH● with IC50 values of 9.307 ± 0.262 µg/mL and 5.242 ± 0.068 µg/mL respectively. With the cationic radical ABTS●+, IC50 varied from 45.049 ± 0.730 µg/mL for methanolic root barks extract to 14.136 ± 0.161 µg/mL for methanolic extract from stem barks. Thus, the methanol extracts of the root and stem barks of Acacia macrostachya possess compounds with very interesting anti-diabetic and antiradical properties and could justify its traditional use.

2001 ◽  
Vol 45 (3) ◽  
pp. 673-678 ◽  
Author(s):  
Michael E. Klepser ◽  
Erika J. Ernst ◽  
C. Rosemarie Petzold ◽  
Paul Rhomberg ◽  
Gary V. Doern

ABSTRACT Several new quinolones that exhibit enhanced in vitro activity against Streptococcus pneumoniae have been developed. Using a dynamic in vitro model, we generated time-kill data for ciprofloxacin, clinafloxacin, grepafloxacin, levofloxacin, moxifloxacin, and trovafloxacin against three isolates of quinolone-susceptible S. pneumoniae. Three pharmacokinetic profiles were simulated for each of the study agents (0.1, 1, and 10 times the area under the concentration-time curve [AUC]). Target 24-h AUCs were based upon human pharmacokinetic data resulting from the maximal daily doses of each agent. Ciprofloxacin was the least active agent against all three isolates. With regimens that simulated the human 24-h AUC, ciprofloxacin resulted in an initial, modest decline in the numbers of CFU per milliliter; however, by 48 h the numbers of CFU per milliliter returned to or exceeded the starting inoculum. At the AUC, levofloxacin resulted in variable bacteriostatic and bactericidal activities against the isolates. The remaining agents yielded bactericidal (99.9% reduction) activity by 48 h with regimens that simulated the AUC. At 0.1 time the AUC ciprofloxacin and levofloxacin produced no inhibitory effect, grepafloxacin exhibited bacteriostatic activity, trovafloxacin had mixed static and cidal activities, and clinafloxacin and moxifloxacin caused significant reductions in the numbers of CFU per milliliter by 48 h. All six agents produced cidal activity at 10 times the AUC. In this dynamic in vitro model of infection, the quinolones demonstrated various degrees of activity against S. pneumoniae. The rank order of activity, with respect to bactericidal effect, was ciprofloxacin (least active) ≪ levofloxacin < grepafloxacin, trovafloxacin < clinafloxacin and moxifloxacin (most active). The rank order of the agents with respect to the selection of resistance was ciprofloxacin (most likely) > grepafloxacin, moxifloxacin, and trovafloxacin > levofloxacin > clinafloxacin.


Author(s):  
Ismanurrahman Hadi ◽  
Riris Istighfari Jenie ◽  
Edy Meiyanto

TNBC, one of the sub type of breast cancers was widely known with high tumorigenic and poor prognosis than others. The development of combination agent (co-chemotherapy) with doxorubicin for chemotherapy of TNBC were carried out to decrease doxorubicin side effect and resistance in cancer. This present study aims to explore the co-chemotherapeutic properties of PGV-0 and investigate induction of doxorubicin on apoptosis, senescence and ROS against TNBC. 4T1 Cell line were used as a TNBC in vitro model. Cytotoxic measurement was performed using MTT assay resulting in IC50 values of 52 μM. Meanwhile, the combination of doxorubicin and PGV-0 showed synergistic effect which decreased cell viability of 4T1 better than single treatment of doxorubicin. Apoptosis analysis was performed using annexin V/PI assay indicated that the combination treatment of PGV-0 and doxorubicin increased apoptosis evidence. Senescence detection was carried out using senescence-associated-β galactosidase (SA-β-gal) assay. The results showed that a single treatment of PGV-0 induced cellular senescence and increased senescence cells in combination treatment. Moreover, DCFDA staining showed that PGV-0 increased ROS level at single treatment, whereas combination treatment increased ROS intracellular compared to the positive control of doxorubicin. Based on these results, PGV-0 has potential as a co-chemotherapeutic candidate on TNBC.Keyword: 4T1, PGV-0, Co-chemotherapy, Cytotoxic, Senescence, Apoptosis, ROS


Aim: The present study was designed to investigate the in vitro inhibitory potential of Euphorbia hirta root extract on alpha-amylase and alpha glucosidase enzymes. Materials and Methods: Alcoholic extract of Euphorbia hirta was subjected to inhibitory effect of alpha-amylase and alpha-glucosidase using specific standard in vitro procedure. Results: The results revealed that extract successfully inhibited the activity of both enzymes in an in vitro model. The alcoholic root extract of Euphorbia hirta inhibited the alpha amylase and alpha glucosidase enzymes as 79.73 ± 0.18% and 81.35 ± 0.12% respectively. Conclusion: The present study showed that, the alcoholic extract showed a significant inhibitory effect on alpha amylase and alpha glucosidase enzymes, thus validating the traditional use of the plant.


2020 ◽  
Vol 11 (4) ◽  
pp. 391-401
Author(s):  
T. Vernay ◽  
I. Cannie ◽  
F. Gaboriau ◽  
S. David-Le Gall ◽  
Z. Tamanai-Shacoori ◽  
...  

Salmonella Heidelberg is one of the most common serovar causing foodborne illnesses. To limit the development of digestive bacterial infection, food supplements containing probiotic bacteria can be proposed. Commensal non-toxigenic Bacteroides fragilis has recently been suggested as a next-generation probiotic candidate. By using an original triple co-culture model including Caco-2 cells (representing human enterocytes), HT29-MTX (representing mucus-secreting goblet cells), and M cells differentiated from Caco-2 by addition of Raji B lymphocytes, bacterial translocation was evaluated. The data showed that S. Heidelberg could translocate in the triple co-culture model with high efficiency, whereas for B. fragilis a weak translocation was obtained. When cells were exposed to both bacteria, S. Heidelberg translocation was inhibited. The cell-free supernatant of B. fragilis also inhibited S. Heidelberg translocation without impacting epithelial barrier integrity. This supernatant did not affect the growth of S. Heidelberg. The non-toxigenic B. fragilis confers health benefits to the host by reducting bacterial translocation. These results suggested that the multicellular model provides an efficient in vitro model to evaluate the translocation of pathogens and to screen for probiotics that have a potential inhibitory effect on this translocation.


1976 ◽  
Vol 4 (6) ◽  
pp. 375-381 ◽  
Author(s):  
R D Mackenzie ◽  
E M Gleason ◽  
G L Schatzman ◽  
M J Cawein

Since no practical animal model is available for the evaluation of compounds in vivo, we have developed an in vitro model for determining the effect of compounds on the rate of sickling of erythrocytes in whole blood taken from patients with sickle cell anaemia. RMI 6792 (a phenethanol-diamine derivative), procaine, and L-glutamine were tested in this in vitro system. RMI 6792 was tested at various concentrations in whole blood. The data indicate that RMI 6792 decreased the rate of sickling at and above 60 μg/ml. Procaine slightly decreased sickling rate at 100 μg/ml. L-glutamine at 555 μg/ml had no inhibitory effect. RMI 6792 and procaine had no effect on the oxygen dissociation curve. RMI 6792 affected the calcium flux of the erythrocytes and the calcium concentration in the erythrocytes.


Author(s):  
Hoda Keshmiri Neghab ◽  
Mohammad Hasan Soheilifar ◽  
Gholamreza Esmaeeli Djavid

Abstract. Wound healing consists of a series of highly orderly overlapping processes characterized by hemostasis, inflammation, proliferation, and remodeling. Prolongation or interruption in each phase can lead to delayed wound healing or a non-healing chronic wound. Vitamin A is a crucial nutrient that is most beneficial for the health of the skin. The present study was undertaken to determine the effect of vitamin A on regeneration, angiogenesis, and inflammation characteristics in an in vitro model system during wound healing. For this purpose, mouse skin normal fibroblast (L929), human umbilical vein endothelial cell (HUVEC), and monocyte/macrophage-like cell line (RAW 264.7) were considered to evaluate proliferation, angiogenesis, and anti-inflammatory responses, respectively. Vitamin A (0.1–5 μM) increased cellular proliferation of L929 and HUVEC (p < 0.05). Similarly, it stimulated angiogenesis by promoting endothelial cell migration up to approximately 4 fold and interestingly tube formation up to 8.5 fold (p < 0.01). Furthermore, vitamin A treatment was shown to decrease the level of nitric oxide production in a dose-dependent effect (p < 0.05), exhibiting the anti-inflammatory property of vitamin A in accelerating wound healing. These results may reveal the therapeutic potential of vitamin A in diabetic wound healing by stimulating regeneration, angiogenesis, and anti-inflammation responses.


Sign in / Sign up

Export Citation Format

Share Document