scholarly journals Voltage Regulation through Wide Area Voltage Control of HV/MV Transformers and Inverters’ Reactive Power Support

Author(s):  
I. Talavrera ◽  
P. Franz ◽  
T. Theisen ◽  
J. Hanson
Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4220
Author(s):  
Dai Orihara ◽  
Hiroshi Kikusato ◽  
Jun Hashimoto ◽  
Kenji Otani ◽  
Takahiro Takamatsu ◽  
...  

Inertia reduction due to inverter-based resource (IBR) penetration deteriorates power system stability, which can be addressed using virtual inertia (VI) control. There are two types of implementation methods for VI control: grid-following (GFL) and grid-forming (GFM). There is an apparent difference among them for the voltage regulation capability, because the GFM controls IBR to act as a voltage source and GFL controls it to act as a current source. The difference affects the performance of the VI control function, because stable voltage conditions help the inertial response to contribute to system stability. However, GFL can provide the voltage control function with reactive power controllability, and it can be activated simultaneously with the VI control function. This study analyzes the performance of GFL-type VI control with a voltage control function for frequency stability improvement. The results show that the voltage control function decreases the voltage variation caused by the fault, improving the responsivity of the VI function. In addition, it is found that the voltage control is effective in suppressing the power swing among synchronous generators. The clarification of the contribution of the voltage control function to the performance of the VI control is novelty of this paper.


2018 ◽  
Vol 7 (2.28) ◽  
pp. 362
Author(s):  
Raed A. Shalwala

One of the most important operational requirements for any electrical power network for both distribution and transmission level is voltage control. Many studies have been carried out to improve or develop new voltage control techniques to facilitate safe connection of distributed generation. In Saudi Arabia, due to environmental, economic and development perspectives, a wide integration of photovoltaic (PV) genera-tion in distribution network is expected in the near future. This development in the network may cause voltage regulation problems due to the interaction with the existing conventional control system. In a previous paper, a control system has been described using a fuzzy logic control to set the on-line tap changer for the primary substation. In this paper a new control system is proposed for controlling the power factor of individual PV invertors based on observed correlation between net active and reactive power at each connection. A fuzzy logic control has been designed to alter the power factor for the remote invertors from the secondary substation to keep the feeder voltage within the permissible limits. In order to confirm the validity of the proposed method, simulations are carried out for a realistic distribution network with real data for load and solar radiation. Results showing the performance of the new control method are presented and discussed.  


TecnoLógicas ◽  
2018 ◽  
Vol 21 (42) ◽  
pp. 63-78
Author(s):  
Edwin H. Lopera-Mazo ◽  
Jairo Espinosa

This paper compares a conventional Secondary Voltage Regulation (SVR) scheme based on pilot nodes with a proposed SVR that takes into account average voltages of control zones. Voltage control significance for the operation of power systems has promoted several strategies in order to deal with this problem. However, the Hierarchical Voltage Control System (HVCS) is the only scheme effectively implemented with some relevant applications into real power systems.The HVCS divides the voltage control problem into three recognized stages. Among them, the SVR is responsible for managing reactive power resources to improve network voltage profile. Conventional SVR is based on dividing the system into some electrically distant zones and controlling the voltage levels of some specific nodes in the system named pilot nodes, whose voltage levels are accepted as appropriate indicators of network voltage profile.The SVR approach proposed in this work does not only consider the voltage on pilot nodes, but it also takes the average voltages of the defined zones to carry out their respective control actions. Additionally, this innovative approach allows to integrate more reactive power resources into each zone according to some previously defined participation factors.The comparison between these strategies shows that the proposed SVR achieves a better allocation of reactive power in the system than conventional SVR, and it is able to keep the desired voltage profile, which has been expressed in terms of network average voltage.


2021 ◽  
Vol 252 ◽  
pp. 01033
Author(s):  
Junchao Ma ◽  
Xiaoming Huang ◽  
Boliang Lou ◽  
Xiulin Xiao ◽  
Yinlong Fan ◽  
...  

With the increase of grid-connected PV capacity, voltage regulation at point of common coupling by controlling the reactive power injected into the grid is available. This paper presents an adaptive voltage control strategy for distribution network with high proportion PV system. The PI gain of the voltage controller is automatically adjusted by the extremum seeking algorithm to dynamically respond to the changes of the network. The PI gains are updated online through the minimization of a cost function, which represents the voltage controller performance. Finally, a distribution network model of 5 MW photovoltaic power generation system is built in MATLAB / Simulink to verify the effectiveness of the proposed control strategy.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2785
Author(s):  
Dongwon Lee ◽  
Changhee Han ◽  
Gilsoo Jang

The proliferation of renewable energy resources (RES), especially solar photovoltaic (PV) generation resources, causes overvoltage and line overloading in distribution networks. This study proposes a two-level volt–var control method based on multiple timescales. The on-load tap changer (OLTC) operates on an hourly timescale, to regulate the voltage on the secondary winding. In the 15-minutes timescale, PV-connected smart inverters and static var compensators (SVCs) are obliged to compensate the reactive power for the voltage control at the point of common coupling. In the multi-timescale voltage control framework, this study proposes a new multi-sectional volt–var curve (MSVVC) of a PV inverter. The objective of the MSVVC is to minimize the energy loss in the network, improve the voltage profile, and obtain the operational margin of other reactive power compensation devices. In the process of determining the optimal parameters of the MSVVC, stochastic modeling-based load flow analysis is utilized to consider the intermittency and uncertainty of RES generation. The effectiveness of the proposed method is verified on the IEEE 33-bus system in comparison with the conventional volt–var curve cases.


Sign in / Sign up

Export Citation Format

Share Document