scholarly journals Secondary voltage regulation based on average voltage control

TecnoLógicas ◽  
2018 ◽  
Vol 21 (42) ◽  
pp. 63-78
Author(s):  
Edwin H. Lopera-Mazo ◽  
Jairo Espinosa

This paper compares a conventional Secondary Voltage Regulation (SVR) scheme based on pilot nodes with a proposed SVR that takes into account average voltages of control zones. Voltage control significance for the operation of power systems has promoted several strategies in order to deal with this problem. However, the Hierarchical Voltage Control System (HVCS) is the only scheme effectively implemented with some relevant applications into real power systems.The HVCS divides the voltage control problem into three recognized stages. Among them, the SVR is responsible for managing reactive power resources to improve network voltage profile. Conventional SVR is based on dividing the system into some electrically distant zones and controlling the voltage levels of some specific nodes in the system named pilot nodes, whose voltage levels are accepted as appropriate indicators of network voltage profile.The SVR approach proposed in this work does not only consider the voltage on pilot nodes, but it also takes the average voltages of the defined zones to carry out their respective control actions. Additionally, this innovative approach allows to integrate more reactive power resources into each zone according to some previously defined participation factors.The comparison between these strategies shows that the proposed SVR achieves a better allocation of reactive power in the system than conventional SVR, and it is able to keep the desired voltage profile, which has been expressed in terms of network average voltage.

2018 ◽  
Vol 7 (2.28) ◽  
pp. 362
Author(s):  
Raed A. Shalwala

One of the most important operational requirements for any electrical power network for both distribution and transmission level is voltage control. Many studies have been carried out to improve or develop new voltage control techniques to facilitate safe connection of distributed generation. In Saudi Arabia, due to environmental, economic and development perspectives, a wide integration of photovoltaic (PV) genera-tion in distribution network is expected in the near future. This development in the network may cause voltage regulation problems due to the interaction with the existing conventional control system. In a previous paper, a control system has been described using a fuzzy logic control to set the on-line tap changer for the primary substation. In this paper a new control system is proposed for controlling the power factor of individual PV invertors based on observed correlation between net active and reactive power at each connection. A fuzzy logic control has been designed to alter the power factor for the remote invertors from the secondary substation to keep the feeder voltage within the permissible limits. In order to confirm the validity of the proposed method, simulations are carried out for a realistic distribution network with real data for load and solar radiation. Results showing the performance of the new control method are presented and discussed.  


Inventions ◽  
2020 ◽  
Vol 5 (3) ◽  
pp. 37 ◽  
Author(s):  
Omar H. Abdalla ◽  
Hady H. Fayek ◽  
A. M. Abdel Ghany

This paper presents secondary voltage control by extracting reactive power from renewable power technologies to control load buses voltage in a power system at different operating conditions. The study is performed on a 100% renewable 14-bus system. Active and reactive powers controls are considered based on grid codes of countries with high penetration levels of renewable energy technologies. A pilot bus is selected in order to implement the secondary voltage control. The selection is based on short-circuit calculation and sensitivity analysis. An optimal Proportional Integral Derivative (PID) voltage controller is designed using genetic algorithm. A comparison between system with and without secondary voltage control is presented in terms of voltage profile and total power losses. The optimal voltage magnitudes at busbars are calculated to achieve minimum power losses using optimal power flow. The optimal placement of Phasor Measurement Units (PMUs) is performed in order to measure the voltage magnitude of buses with minimum cost. Optimization and simulation processes are performed using DIgSILENT and MATLAB software applications.


2021 ◽  
Vol 11 (19) ◽  
pp. 9233
Author(s):  
Heungjae Lee ◽  
Wonkun Yu ◽  
Junghyun Oh ◽  
Hyungsuk Kim ◽  
Jinyoung Kim

As modern power systems become large and complicated, an automated voltage and reactive power control system is required in most developed countries due to the remarkable recent progress in computer networks and information technology. To date, voltage control has depended on human operators in the Korean power system. Accordingly, this paper proposes a universal intelligent voltage control system for bulk power systems based on sensitivity analysis and a main expert system. A detailed state space modeling technique is discussed, and an effective performance index is proposed to accelerate the searching performance of the expert system. As the searching strategy is an important factor for the speed of the expert system, the least-first search algorithm is applied using this performance index. The proposed system has been applied to the Korean power system, showing promising results.


Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4241 ◽  
Author(s):  
Ndamulelo Tshivhase ◽  
Ali N. Hasan ◽  
Thokozani Shongwe

Recently, the awareness of the severe consequences of greenhouse gases on the environment has escalated. This has encouraged the world to reduce the usage of fossil fuels for power generation and increase the use of cleaner sources, such as solar energy and wind energy. However, the conventional power system itself was designed as a passive power system, in which power generation is centralised, and power flows from substations towards the loads. Decentralised renewable energy sources, also called distributed generators, were introduced to create an active power system in which power generation can occur anywhere in the power system. Decentralised power generation creates challenges for the conventional power system, such as voltage fluctuations, high voltage magnitudes, reverse power flow, and low power factor. In this paper, an adaptive control system that coordinates different distributed generators for voltage regulation and power factor correction is introduced and designed. The control system will decrease the total reactive power that flows in the transmission network through a reactive power exchange between distributed generators. Therefore, power factor will improve, power system losses will reduce, and the total apparent power on lines will reduce, giving more room to active power to flow. The results obtained showed that the control system is effective in regulating voltage and improving the power factor when multiple distributed generators are connected.


2013 ◽  
Vol 860-863 ◽  
pp. 2441-2446
Author(s):  
Xiao Ping Zhang ◽  
Xu Dong Song ◽  
Nan Hua Yu ◽  
Jong Cong Chen ◽  
Lei Lei Zhang

As the distribution energies are becoming the future trend to solve the tense fossil fuel supplying and environmental issues, further research on the management of DGs connected to system is necessary. Management of reactive power resources is vital for stable and secure operation of power systems in power losses and voltage quality. Base on this, an optimal power allocation strategy of different types of DG units which result in the minimum line losses and relatively good voltage profile is proposed in this paper.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2785
Author(s):  
Dongwon Lee ◽  
Changhee Han ◽  
Gilsoo Jang

The proliferation of renewable energy resources (RES), especially solar photovoltaic (PV) generation resources, causes overvoltage and line overloading in distribution networks. This study proposes a two-level volt–var control method based on multiple timescales. The on-load tap changer (OLTC) operates on an hourly timescale, to regulate the voltage on the secondary winding. In the 15-minutes timescale, PV-connected smart inverters and static var compensators (SVCs) are obliged to compensate the reactive power for the voltage control at the point of common coupling. In the multi-timescale voltage control framework, this study proposes a new multi-sectional volt–var curve (MSVVC) of a PV inverter. The objective of the MSVVC is to minimize the energy loss in the network, improve the voltage profile, and obtain the operational margin of other reactive power compensation devices. In the process of determining the optimal parameters of the MSVVC, stochastic modeling-based load flow analysis is utilized to consider the intermittency and uncertainty of RES generation. The effectiveness of the proposed method is verified on the IEEE 33-bus system in comparison with the conventional volt–var curve cases.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4220
Author(s):  
Dai Orihara ◽  
Hiroshi Kikusato ◽  
Jun Hashimoto ◽  
Kenji Otani ◽  
Takahiro Takamatsu ◽  
...  

Inertia reduction due to inverter-based resource (IBR) penetration deteriorates power system stability, which can be addressed using virtual inertia (VI) control. There are two types of implementation methods for VI control: grid-following (GFL) and grid-forming (GFM). There is an apparent difference among them for the voltage regulation capability, because the GFM controls IBR to act as a voltage source and GFL controls it to act as a current source. The difference affects the performance of the VI control function, because stable voltage conditions help the inertial response to contribute to system stability. However, GFL can provide the voltage control function with reactive power controllability, and it can be activated simultaneously with the VI control function. This study analyzes the performance of GFL-type VI control with a voltage control function for frequency stability improvement. The results show that the voltage control function decreases the voltage variation caused by the fault, improving the responsivity of the VI function. In addition, it is found that the voltage control is effective in suppressing the power swing among synchronous generators. The clarification of the contribution of the voltage control function to the performance of the VI control is novelty of this paper.


1991 ◽  
Vol 11 (2) ◽  
pp. 49
Author(s):  
A. Stankovic ◽  
M. Ilic ◽  
D. Maratukulam

Sign in / Sign up

Export Citation Format

Share Document