scholarly journals Cost Reduction of Hybrid System Using Current Loop Control for Inverter and Wind Variation Control

2019 ◽  
Vol 5 (9) ◽  
pp. 12-20
Author(s):  
Megha . ◽  
Ranjeeta Khare

The hybrid renewable energy system (HRES) is a combination of renewable and conventional energy sources. It can also combine two or more renewable energy sources operating in standalone mode or in network mode. In this work two models have been created in with we have proposed a model of hybrid system in which inverter is controlled by a designed internal current loop controller and wind variations are adjusted using a algorithm. It was found to be that the proposed system gives 1150 VA output which is considerably more than the 1000VA output of the system with basic voltage control. The efficiency is enhanced from 68 % to 70%.  The system cost was found to be 70483.53 units in the system having basic voltage control and with the internal current loop control, it was reduced to 66795.26 units. Thus it can be drawn from this work that while designing an inverter control strategy the proposed internal current loop control can serve the purpose with better results in terms of power, efficiency and system cost.

2017 ◽  
Vol 68 (11) ◽  
pp. 2641-2645
Author(s):  
Alexandru Ciocan ◽  
Ovidiu Mihai Balan ◽  
Mihaela Ramona Buga ◽  
Tudor Prisecaru ◽  
Mohand Tazerout

The current paper presents an energy storage system that stores the excessive energy, provided by a hybrid system of renewable energy sources, in the form of compressed air and thermal heat. Using energy storage systems together with renewable energy sources represents a major challenge that could ensure the transition to a viable economic future and a decarbonized economy. Thermodynamic calculations are conducted to investigate the performance of such systems by using Matlab simulation tools. The results indicate the values of primary and global efficiencies for various operating scenarios for the energy storage systems which use compressed air as medium storage, and shows that these could be very effective systems, proving the possibility to supply to the final user three types of energy: electricity, heat and cold function of his needs.


2021 ◽  
Vol 13 (20) ◽  
pp. 11435
Author(s):  
Foday Conteh ◽  
Hiroshi Takahashi ◽  
Ashraf Mohamed Hemeida ◽  
Narayanan Krishnan ◽  
Alexey Mikhaylov ◽  
...  

The provision of electricity in a reliable and sustainable manner in provincial towns and villages in the small West Africa state of Sierra Leone requires the adoption of appropriate technologies. The rapid increase in electricity demand has generated great interest in how to tackle a possible long-lasting energy deficiency in the country. This paper aims at analyzing the techno-economic feasibility of a hybrid renewable energy system (HRES) for the sustainable rural electrification of Lungi Town, Port Loko District, Sierra Leone. Optimization, economic, reliability, and sustainability analyses were carried out using a genetic algorithm (GA), with the main objectives of minimizing the loss of power supply probability (LPSP) and cost of energy (COE). Three different case scenarios were configured, using a diesel generator (DG), wind/PV/DG/battery, and wind/PV/battery. Various combinations of these case scenarios were compared to determine which option was the most economically viable. In order to determine the case scenario with the lowest LPSP and COE, the operations and maintenance costs of the three cases were calculated. Using only DG for case one, the operations and maintenance cost amounted to USD 1,050,348.12/year. The operation and maintenance cost for case two, which included wind/PV/DG/battery, was found to be USD 561,674.06/year. The operations and maintenance cost for case three, which included wind/PV/battery, was found to be USD 36,000/year. In standalone microgrids, however, the use of renewable energy sources is not reliable due to the uncertainty of renewable energy sources. Consequently, the simulation results show that the wind/PV/DG/battery-based HRES is the most cost-effective, reliable, and sustainable for the specific location in comparison to the current traditional method of electricity generation. Since there is abundant solar radiation with substantial wind speeds across the country, this HRES can be applied in most rural and remote areas in place of the current diesel generators (DGs) that are widely deployed in the country.


2011 ◽  
Vol 374-377 ◽  
pp. 137-140
Author(s):  
Hua Zhang ◽  
Hui Zhang

The hybrid system of solar energy and geothermal heat pump (GHP) can put the advantages of the two renewable energy sources together and make up the deficiencies of each other. The concept and the development of the hybrid system are introduced; the work principle and the operational mode of the system are analyzed. Through the introduction of two instances, this paper analyzes the way of the system in buildings and the saving potential applying the hybrid system.


Taking into consideration of continuously increasing consumption of the electricity and perturb towards environmental issues, renewable energy sources have been broadly used for generation of electricity. A Hybrid Energy System can be elucidated as systems which consist of various energy sources such as wind, solar, fuel cell, diesel generator and storage systems such as batteries to store energy are integrated and interconnected to satisfy the load energy demand. This paper infers the generation of electricity by utilizing the Hybrid Renewable Energy System (HRES). This paper presents the modelling and future challenges of the HRES.


Sign in / Sign up

Export Citation Format

Share Document