scholarly journals Overview of Hybrid Energy Solar Systems

2021 ◽  
pp. 43-48
Author(s):  
Sanyam Indurkhya ◽  
Shravan Vishwakarma

Reduced coal usage has resulted in the assimilation of the more renewable energy systems in latest electric power systems for a variety of reasons.Renewable Energy resources are playing most significant role in the developing countries. Solar energy and wind energy This work basically presents the basic overview of the Hybrid Energy Systems (HESs) which are utilized for inserting reactive power.

Author(s):  
G. R. Prudhvi Kumar ◽  
D. Sattianadan ◽  
K. Vijayakumar

The power generation through renewable energy resources is increasing vastly, Solar energy and Wind Energy are the most abundantly available renewable energy resources. The growth of small scale distributed grid networks increasing rapidly in the modern power systems and Distributed Generation (DG) plays a predominant role. Microgrid is one among the emerging techniques in power systems. Power Management is mainly required to have control over the real and reactive power of individual DG and for smooth operation, maintaining stability and reliability. This paper presents a survey of the research works already reported focusing on power management of hybrid energy systems such as mainly solar and wind systems in microgrid. Six different approaches have been studied in detail for AC,DC and hybrid AC/DC microgrid.


2021 ◽  
Vol 16 ◽  
pp. 41-51
Author(s):  
T. A. Boghdady ◽  
S. N. Alajmi ◽  
W. M. K. Darwish ◽  
M. A. Mostafa Hassan ◽  
A. Monem Seif

Renewable energy resources are a favorable solution for the coming energy. So, a great interest has been paid in the last decades for developing and utilizing renewable energy resources as wind energy. As it has a large energy contents and, particularize with the availability, but the major problems of it are represented in unmatched with load demand because the intermittency and fluctuation of nature conditions. Many studies focused on the new strategy of using Battery Storage System (BSS), and solving some problems that affect the DC bus voltage and the BSS by using Electrochemical Double Layer Capacitor (EDLC). Their capability is to store energy to realize the objective of time shifting of surplus energy with a high efficiency. The article main objective is to model, simulate, design, and study the performance of a Stand-Alone Wind Energy System with Hybrid Energy Storage (SAWS-HES). Thus, a complete model of the proposed system is implemented including a detailed modeling procedure of the HESS components. In addition to the main contribution, a study of the performance of EDLC only as a storage device that has fast response device integrated to the suggested system then it hybridized with the BSS. The HESS has the capability to compensate the DC bus voltage in the transient conditions and gives good stability for the system. The SAWS-HES utilizes one main renewable energy resource as wind turbine and overall model is employed under MATLAB/Simulink including a developed simple logic controller. The SAWS-HES simulation results presented a promising performance and have a satisfied performance in meeting the end load demands at different operation conditions. This ensures the SAWS-HES reliability and the effectiveness with HES and the controller in stand-alone operation formulating an excellent solution for the renewable energy systems


2020 ◽  
Vol 13 (1) ◽  
pp. 93
Author(s):  
Wesam H. Beitelmal ◽  
Paul C. Okonkwo ◽  
Fadhil Al Housni ◽  
Wael Alruqi ◽  
Omar Alruwaythi

Diesel generators are being used as a source of electricity in different parts of the world. Because of the significant expense in diesels cost and the requirement for a greener domain, such electric generating systems appear not to be efficient and environmentally friendly and should be tended to. This paper explores the attainability of utilizing a sustainable power source based on a cross-breed electric system in the cement factory in Salalah, Oman. The HOMER software that breaks down the system setup was utilized to examine the application and functional limitations of each hybridized plan. The result showed that a renewable-energy (RE)-based system has a lower cost of energy (COE) and net present cost (NPC) compared to diesel generator-based hybrid electric and standalone systems. Although the two pure renewable hybrid energy systems considered in this study displayed evidence of no emissions, lower NPC and COE values are observed in the photovoltaic/battery (PV/B) hybrid energy system compared with photovoltaic/wind turbine/battery (PV/WT/B). The PV/WT/B and PV/B systems have higher electricity production and low NPC and COE values. Moreover, the PV/B has the highest return on investment (ROI) and internal rate of return (IRR), making the system the most economically viable and adjudged to be a better candidate for rural community electrification demands.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1125
Author(s):  
Kody M. Powell ◽  
Kasra Mohammadi

As renewable energy technologies decrease in cost and become more prevalent, there is an increasing trend towards electrification of many energy systems [...]


Sign in / Sign up

Export Citation Format

Share Document