scholarly journals Accelerating Evolutionary Construction Tree Extraction via Graph Partitioning

Author(s):  
Markus Friedrich ◽  
Sebastian Feld ◽  
Thomy Phan ◽  
Pierre-Alain Fayolle
2019 ◽  
Author(s):  
Nasir Saeed ◽  
Mohamed-Slim Alouini ◽  
Tareq Y. Al-Naffouri

<div>Localization is a fundamental task for optical internet</div><div>of underwater things (O-IoUT) to enable various applications</div><div>such as data tagging, routing, navigation, and maintaining link connectivity. The accuracy of the localization techniques for OIoUT greatly relies on the location of the anchors. Therefore, recently localization techniques for O-IoUT which optimize the anchor’s location are proposed. However, optimization of anchors location for all the smart objects in the network is not a useful solution. Indeed, in a network of densely populated smart objects, the data collected by some sensors are more valuable than the data collected from other sensors. Therefore, in this paper, we propose a three-dimensional accurate localization technique by optimizing the anchor’s location for a set of smart objects. Spectral graph partitioning is used to select the set of valuable</div><div>sensors.</div>


Author(s):  
Mark Newman

An introduction to the mathematical tools used in the study of networks. Topics discussed include: the adjacency matrix; weighted, directed, acyclic, and bipartite networks; multilayer and dynamic networks; trees; planar networks. Some basic properties of networks are then discussed, including degrees, density and sparsity, paths on networks, component structure, and connectivity and cut sets. The final part of the chapter focuses on the graph Laplacian and its applications to network visualization, graph partitioning, the theory of random walks, and other problems.


2021 ◽  
Vol 13 (2) ◽  
pp. 223
Author(s):  
Zhenyang Hui ◽  
Shuanggen Jin ◽  
Dajun Li ◽  
Yao Yevenyo Ziggah ◽  
Bo Liu

Individual tree extraction is an important process for forest resource surveying and monitoring. To obtain more accurate individual tree extraction results, this paper proposed an individual tree extraction method based on transfer learning and Gaussian mixture model separation. In this study, transfer learning is first adopted in classifying trunk points, which can be used as clustering centers for tree initial segmentation. Subsequently, principal component analysis (PCA) transformation and kernel density estimation are proposed to determine the number of mixed components in the initial segmentation. Based on the number of mixed components, the Gaussian mixture model separation is proposed to separate canopies for each individual tree. Finally, the trunk stems corresponding to each canopy are extracted based on the vertical continuity principle. Six tree plots with different forest environments were used to test the performance of the proposed method. Experimental results show that the proposed method can achieve 87.68% average correctness, which is much higher than that of other two classical methods. In terms of completeness and mean accuracy, the proposed method also outperforms the other two methods.


Author(s):  
Wenfei Fan ◽  
Ruochun Jin ◽  
Muyang Liu ◽  
Ping Lu ◽  
Xiaojian Luo ◽  
...  
Keyword(s):  

2021 ◽  
pp. 102792
Author(s):  
Fareed Qararyah ◽  
Mohamed Wahib ◽  
Doğa Dikbayır ◽  
Mehmet Esat Belviranli ◽  
Didem Unat

2021 ◽  
Vol 5 (1) ◽  
pp. 14
Author(s):  
Christos Makris ◽  
Georgios Pispirigos

Nowadays, due to the extensive use of information networks in a broad range of fields, e.g., bio-informatics, sociology, digital marketing, computer science, etc., graph theory applications have attracted significant scientific interest. Due to its apparent abstraction, community detection has become one of the most thoroughly studied graph partitioning problems. However, the existing algorithms principally propose iterative solutions of high polynomial order that repetitively require exhaustive analysis. These methods can undoubtedly be considered resource-wise overdemanding, unscalable, and inapplicable in big data graphs, such as today’s social networks. In this article, a novel, near-linear, and highly scalable community prediction methodology is introduced. Specifically, using a distributed, stacking-based model, which is built on plain network topology characteristics of bootstrap sampled subgraphs, the underlined community hierarchy of any given social network is efficiently extracted in spite of its size and density. The effectiveness of the proposed methodology has diligently been examined on numerous real-life social networks and proven superior to various similar approaches in terms of performance, stability, and accuracy.


Sign in / Sign up

Export Citation Format

Share Document