scholarly journals DETECCIÓN DE CAMBIOS POR PARCELA PARA LA ACTUALIZACIÓN DE BBDD DE USOS DEL SUELO MEDIANTE IMÁGENES DE ALTA RESOLUCIÓN Y SENTINEL-2.

2019 ◽  
Vol 16 (2) ◽  
pp. 53
Author(s):  
Sergio Danilo Andrade Sampedro
Keyword(s):  

Uno de los elementos básicos para el análisis, gestión y planificación del territorio es contar con información actual y con ello de una buena cartografía de usos de suelo. Los procesos de actualización de bases de datos de usos del suelo suelen ser costosos por lo que las técnicas de observación remota de la Tierra sirven de ayuda. En el presente trabajo se pretende obtener mediante análisis multitemporal de imágenes SENTINEL-2 nivel 2A, correspondientes a los municipios de Torrente, Godelleta y Silla,  la obtención de variables temporales a partir de NDVI, SAVI, EVI, bandas 2, 3, 4 y 8  de 14 fechas del año  2016. La generación de variables temporales es realizada con la finalidad de aportar variables dinámicas a las variables extraídas de imágenes de alta resolución como lo son las ortofotos PNOA del 2008 - 2015 para clasificar el uso de suelo de mejor manera y con ello poder determinar parcelas catastrales con cambio en el uso de suelo con el fin de identificar de forma inmediata los sectores de mayor cambio en caso de que se desee actualizar la cartografía de manera convencional a través de fotointerpretación, de modo que este producto facilite y reduzca los tiempos de ejecución y mantenimiento respecto a la actualización de la base cartográfica.

CATENA ◽  
2021 ◽  
Vol 205 ◽  
pp. 105442
Author(s):  
Xianglin He ◽  
Lin Yang ◽  
Anqi Li ◽  
Lei Zhang ◽  
Feixue Shen ◽  
...  

2021 ◽  
Vol 13 (8) ◽  
pp. 1509
Author(s):  
Xikun Hu ◽  
Yifang Ban ◽  
Andrea Nascetti

Accurate burned area information is needed to assess the impacts of wildfires on people, communities, and natural ecosystems. Various burned area detection methods have been developed using satellite remote sensing measurements with wide coverage and frequent revisits. Our study aims to expound on the capability of deep learning (DL) models for automatically mapping burned areas from uni-temporal multispectral imagery. Specifically, several semantic segmentation network architectures, i.e., U-Net, HRNet, Fast-SCNN, and DeepLabv3+, and machine learning (ML) algorithms were applied to Sentinel-2 imagery and Landsat-8 imagery in three wildfire sites in two different local climate zones. The validation results show that the DL algorithms outperform the ML methods in two of the three cases with the compact burned scars, while ML methods seem to be more suitable for mapping dispersed burn in boreal forests. Using Sentinel-2 images, U-Net and HRNet exhibit comparatively identical performance with higher kappa (around 0.9) in one heterogeneous Mediterranean fire site in Greece; Fast-SCNN performs better than others with kappa over 0.79 in one compact boreal forest fire with various burn severity in Sweden. Furthermore, directly transferring the trained models to corresponding Landsat-8 data, HRNet dominates in the three test sites among DL models and can preserve the high accuracy. The results demonstrated that DL models can make full use of contextual information and capture spatial details in multiple scales from fire-sensitive spectral bands to map burned areas. Using only a post-fire image, the DL methods not only provide automatic, accurate, and bias-free large-scale mapping option with cross-sensor applicability, but also have potential to be used for onboard processing in the next Earth observation satellites.


2021 ◽  
Vol 10 (4) ◽  
pp. 251
Author(s):  
Christina Ludwig ◽  
Robert Hecht ◽  
Sven Lautenbach ◽  
Martin Schorcht ◽  
Alexander Zipf

Public urban green spaces are important for the urban quality of life. Still, comprehensive open data sets on urban green spaces are not available for most cities. As open and globally available data sets, the potential of Sentinel-2 satellite imagery and OpenStreetMap (OSM) data for urban green space mapping is high but limited due to their respective uncertainties. Sentinel-2 imagery cannot distinguish public from private green spaces and its spatial resolution of 10 m fails to capture fine-grained urban structures, while in OSM green spaces are not mapped consistently and with the same level of completeness everywhere. To address these limitations, we propose to fuse these data sets under explicit consideration of their uncertainties. The Sentinel-2 derived Normalized Difference Vegetation Index was fused with OSM data using the Dempster–Shafer theory to enhance the detection of small vegetated areas. The distinction between public and private green spaces was achieved using a Bayesian hierarchical model and OSM data. The analysis was performed based on land use parcels derived from OSM data and tested for the city of Dresden, Germany. The overall accuracy of the final map of public urban green spaces was 95% and was mainly influenced by the uncertainty of the public accessibility model.


2021 ◽  
Vol 13 (5) ◽  
pp. 1028
Author(s):  
Alber Hamersson Sanchez ◽  
Michelle Cristina A. Picoli ◽  
Gilberto Camara ◽  
Pedro R. Andrade ◽  
Michel Eustaquio D. Chaves ◽  
...  

In their comments about our paper, the authors remark on two issues regarding our results relating to the MACCS-ATCOR Joint Algorithm (MAJA). The first relates to the sub-optimal performance of this algorithm under the conditions of our tests, while the second corresponds to an error in our interpretation of MAJA’s bit mask. To answer the first issue, we acknowledge MAJA’s capacity to improve its performance as the number of images increases with time. However, in our paper, we used the images we had available at the time we wrote our paper. Regarding the second issue, we misread the MAJA’s bit mask and mistakenly labelled shadows as clouds. We regret our error and here we present the updated tables and images. We corrected our estimation and, consequently, there is an increment in MAJA’s accuracy in the detection of clouds and cloud shadows. However, these increments are not enough to change the conclusion of our original paper.


2020 ◽  
Vol 5 (1) ◽  
pp. 13
Author(s):  
Negar Tavasoli ◽  
Hossein Arefi

Assessment of forest above ground biomass (AGB) is critical for managing forest and understanding the role of forest as source of carbon fluxes. Recently, satellite remote sensing products offer the chance to map forest biomass and carbon stock. The present study focuses on comparing the potential use of combination of ALOSPALSAR and Sentinel-1 SAR data, with Sentinel-2 optical data to estimate above ground biomass and carbon stock using Genetic-Random forest machine learning (GA-RF) algorithm. Polarimetric decompositions, texture characteristics and backscatter coefficients of ALOSPALSAR and Sentinel-1, and vegetation indices, tasseled cap, texture parameters and principal component analysis (PCA) of Sentinel-2 based on measured AGB samples were used to estimate biomass. The overall coefficient (R2) of AGB modelling using combination of ALOSPALSAR and Sentinel-1 data, and Sentinel-2 data were respectively 0.70 and 0.62. The result showed that Combining ALOSPALSAR and Sentinel-1 data to predict AGB by using GA-RF model performed better than Sentinel-2 data.


Sign in / Sign up

Export Citation Format

Share Document