scholarly journals Methods of measuring crankshaft speed in mechatronics

2018 ◽  
Vol 19 (9) ◽  
pp. 105-107
Author(s):  
Monika Andrych-Zalewska ◽  
Radosław Włostowski ◽  
Radosław Wróbel

The article discusses methods of measuring rotational speed. Classical methods as well as a new method using vibration measurement as the input function in the process of obtaining the result of the crankshaft rotational speed were presented. A classic diagnostic path, as well as digital signal processing, is required to obtain the correct diagnostic INFORMATION. The work also includes information on the CAN bus as well as the EOBD system.

Author(s):  
Jakub Peksinski ◽  
Michal Stefanowski ◽  
Grzegorz Mikolajczak

One of the significant problems in digital signal processing is the filtering and reduction of undesired interference. Due to the abundance of methods and algorithms for processing signals characterized by complexity and effectiveness of removing noise from a signal, depending on the character and level of noise, it is difficult to choose the most effective method. So long as there is specific knowledge or grounds for certain assumptions as to the nature and form of the noise, it is possible to select the appropriate filtering method so as to ensure optimum quality. This chapter describes several methods for estimating the level of noise and presents a new method based on the properties of the smoothing filter.


2019 ◽  
pp. 34-39 ◽  
Author(s):  
E.I. Chernov ◽  
N.E. Sobolev ◽  
A.A. Bondarchuk ◽  
L.E. Aristarhova

The concept of hidden correlation of noise signals is introduced. The existence of a hidden correlation between narrowband noise signals isolated simultaneously from broadband band-limited noise is theoretically proved. A method for estimating the latent correlation of narrowband noise signals has been developed and experimentally investigated. As a result of the experiment, where a time frag ent of band-limited noise, the basis of which is shot noise, is used as the studied signal, it is established: when applying the Pearson criterion, there is practically no correlation between the signal at the Central frequency and the sum of signals at mirror frequencies; when applying the proposed method for the analysis of the same signals, a strong hidden correlation is found. The proposed method is useful for researchers, engineers and metrologists engaged in digital signal processing, as well as developers of measuring instruments using a new technology for isolating a useful signal from noise – the method of mirror noise images.


Sign in / Sign up

Export Citation Format

Share Document