scholarly journals RFID Mutual Authentication Protocols based on Gene Mutation and Transfer

2013 ◽  
Vol 9 (1) ◽  
pp. 44 ◽  
Author(s):  
Raghav V. Sampangi ◽  
Srinivas Sampalli

Radio Frequency Identification (RFID) is a technology that is very popular due to the simplicity in its technology and high adaptability in a variety of areas. The simplicity in the technology, however, comes with a caveat – RFID tags have severe resource restrictions, which make them vulnerable to a range of security attacks. Such vulnerability often results in the loss of privacy of the tag owner and other attacks on tags. Previous research in RFID security has mainly focused on authenticating entities such as readers / servers, which communicate with the tag. Any security mechanism is only as strong as the encryption keys used. Since RFID communication is wireless, critical messages such as key exchange messages are vulnerable to attacks. Therefore, we present a mutual authentication protocol that relies on independent generation and dynamic updates of encryption keys thereby removing the need for key exchange, which is based on the concept of gene mutation and transfer. We also present an enhanced version of this protocol, which improves the security offered by the first protocol. The novelty of the proposed protocols is in the independent generation, dynamic and continuous updates of encryption keys and the use of the concept of gene mutation / transfer to offer mutual authentication of the communicating entities. The proposed protocols are validated by simulation studies and security analysis.

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4444 ◽  
Author(s):  
Ygal Bendavid ◽  
Nasour Bagheri ◽  
Masoumeh Safkhani ◽  
Samad Rostampour

With the exponential increase of Internet of things (IoT) connected devices, important security risks are raised as any device could be used as an attack channel. This preoccupation is particularly important with devices featuring limited processing power and memory capabilities for security purposes. In line with this idea, Xu et al. (2018) proposed a lightweight Radio Frequency Identification (RFID) mutual authentication protocol based on Physical Unclonable Function (PUF)—ensuring mutual tag-reader verification and preventing clone attacks. While Xu et al. claim that their security protocol is efficient to protect RFID systems, we found it still vulnerable to a desynchronization attack and to a secret disclosure attack. Hence, guidelines for the improvements to the protocol are also suggested, for instance by changing the structure of the messages to avoid trivial attacks. In addition, we provide an explicit protocol for which our formal and informal security analysis have found no weaknesses.


2018 ◽  
Vol 14 (8) ◽  
pp. 155014771879512 ◽  
Author(s):  
Madiha Khalid ◽  
Umar Mujahid ◽  
Muhammad Najam-ul-Islam

Internet of Things is one of the most important components of modern technological systems. It allows the real time synchronization and connectivity of devices with each other and with the rest of the world. The radio frequency identification system is used as node identification mechanism in the Internet of Thing networks. Since Internet of Things involve wireless channel for communication that is open for all types of malicious adversaries, therefore many security protocols have been proposed to ensure encryption over wireless channel. To reduce the overall cost of radio frequency identification enabled Internet of Thing network security, the researchers use simple bitwise logical operations such as XOR, AND, OR, and Rot and have proposed many ultralightweight mutual authentication protocols. However, almost all the previously proposed protocols were later found to be vulnerable against several attack models. Recently, a new ultralightweight mutual authentication protocol has been proposed which involves only XOR and Rotation functions in its design and claimed to be robust against all possible attack models. In this article, we have performed cryptanalysis of this recently proposed ultralightweight mutual authentication protocol and found many pitfalls and vulnerabilities in the protocol design. We have exploited weak structure of the protocol messages and proposed three attacks against the said protocol: one desynchronization and two full disclosure attacks.


Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 2957 ◽  
Author(s):  
Feng Zhu ◽  
Peng Li ◽  
He Xu ◽  
Ruchuan Wang

Radio frequency identification is one of the key techniques for Internet of Things, which has been widely adopted in many applications for identification. However, there exist various security and privacy issues in radio frequency identification (RFID) systems. Particularly, one of the most serious threats is to clone tags for the goal of counterfeiting goods, which causes great loss and danger to customers. To solve these issues, lots of authentication protocols are proposed based on physical unclonable functions that can ensure an anti-counterfeiting feature. However, most of the existing schemes require secret parameters to be stored in tags, which are vulnerable to physical attacks that can further lead to the breach of forward secrecy. Furthermore, as far as we know, none of the existing schemes are able to solve the security and privacy problems with good scalability. Since many existing schemes rely on exhaustive searches of the backend server to validate a tag and they are not scalable for applications with a large scale database. Hence, in this paper, we propose a lightweight RFID mutual authentication protocol with physically unclonable functions (PUFs). The performance analysis shows that our proposed scheme can ensure security and privacy efficiently in a scalable way.


2013 ◽  
Vol 846-847 ◽  
pp. 1519-1523
Author(s):  
Nan Zhang ◽  
Jian Hua Zhang ◽  
Jun Yang

While radio frequency identification (RFID) is evolving as a major technology enabler for identifying and tracking goods and assets around the world, its security issues are also increasingly exposed. A Hash-based RFID mutual authentication protocol was put forward. The key was joined into the hash algorithm, and chaos sequences were used to update the key. The protocol enhances the security of the RFID system with low cost. Experiments show that the chaos system has the character of initial value sensitivity, which can be used to distribute and update the secret key. Safety analysis show that the mutual authentication protocol can solve security issues including eavesdropping, illegal access, masquerade, spoofing attack, position tracking.


Author(s):  
Jordan Frith

The phrase the Internet of things was originally coined in a 1999 presentation about attaching radio frequency identification (RFID) tags to individual objects. These tags would make the objects machine-readable, uniquely identifiable, and, most importantly, wirelessly communicative with infrastructure. This chapter evaluates RFID as a piece of mobile communicative infrastructure, and it examines two emerging forms: near-field communication (NFC) and Bluetooth low-energy beacons. The chapter shows how NFC and Bluetooth low-energy beacons may soon move some types of RFID to smartphones, in this way evolving the use of RFID in payment and transportation and enabling new practices of post-purchasing behaviors.


2021 ◽  
Vol 13 (7) ◽  
pp. 3684
Author(s):  
Bibiana Bukova ◽  
Jiri Tengler ◽  
Eva Brumercikova

The paper focuses on the environmental burden created by Radio Frequency Identification (RFID) tags in the Slovak Republic (SR). In order to determine the burden there, a model example was created to calculate electronic waste produced by households in the SR by placing RFID tags into municipal waste. The paper presents a legislative regulatory approach towards the environmental impacts from using RFID tags in the SR, as well as an analysis of the environmental burden of using RFID tags throughout the world. The core of the paper is focused on the research conducted in order to calculate the environmental burden of a model household in the SR, where the number of used RFID tags per year was observed; then, the volume of e-waste produced by households of the Slovak Republic per year was determined. In the conclusion, we provide the results of the research presented and discuss including our own proposal for solving the problems connected with the environmental burden of RFID technology.


Sign in / Sign up

Export Citation Format

Share Document