scholarly journals Applying fiber-optic system to control shaft torque

Author(s):  
Alexander Sergeevich Bordyug

The article considers the procedure of torque control, which is very popular in a wide variety of industries with many design features. In marine power engineering the problems of determining the forces, torque on the shaft and power are solved by means of torsiometers with torque sensors. The most widely used torque sensors are of capacitive, induction, strain gauge and photoelectric types. It has been stated that there are limitations in the process of torque control due to the susceptibility of systems to the electromagnetic interference, lack of a high degree of protection for electrical equipment and necessary recalibration. Fiber optic systems have found application in torque measurement systems in the oil and gas and aerospace industries. The use of such systems on ships is more expensive in comparison with the technologies used today, for example, the systems based on strain gauges. It has been proposed to use an inexpensive optical measuring system based on the Pound-Drever-Hall technique with using a foil-clad strain gauge and an aluminum torsion rod. There has been illustrated the system of torque control, the phase graphs for the Fabry-Perot resonator and the graph of the resonator transmission spectrum are presented, the reflection coefficient value is given. A method for measuring the phase of a reflected beam from a Fabry-Perot resonator is being considered, the injection current of a laser is modulated by means of an electric oscillator to generate side stripes in the electric field of a laser beam. The carried out studies and calculations contribute to improving the reliability of the coastal power system; the possibility of their use in marine electrical systems has been proved.

2020 ◽  
pp. 38-44
Author(s):  
A. V. Polyakov ◽  
M. A. Ksenofontov

Optical technologies for measuring electrical quantities attract great attention due to their unique properties and significant advantages over other technologies used in high-voltage electric power industry: the use of optical fibers ensures high stability of measuring equipment to electromagnetic interference and galvanic isolation of high-voltage sensors; external electromagnetic fields do not influence the data transmitted from optical sensors via fiber-optic communication lines; problems associated with ground loops are eliminated, there are no side electromagnetic radiation and crosstalk between the channels. The structure and operation principle of a quasi-distributed fiber-optic high-voltage monitoring system is presented. The sensitive element is a combination of a piezo-ceramic tube with an optical fiber wound around it. The device uses reverse transverse piezoelectric effect. The measurement principle is based on recording the change in the recirculation frequency under the applied voltage influence. When the measuring sections are arranged in ascending order of the measured effective voltages relative to the receiving-transmitting unit, a relative resolution of 0,3–0,45 % is achieved for the PZT-5H and 0,8–1,2 % for the PZT-4 in the voltage range 20–150 kV.


Author(s):  
I.F. Warsito ◽  
H. Widyaputera ◽  
E. Supriyanto ◽  
J. Pusppanathan ◽  
M. A. A. Taib ◽  
...  

This paper presents the modelling and simulation of a protection system for equipment in the oil and gas industry with various RF grids and enclosures against 500 MHz electromagnetic interference (EMI). COMSOL Multiphysics®Modelling software was used in this study. Electric and magnetic fields distributions were determined by using the Generalized Minimal Residual Method (GMRES) which was integrated into COMSOL Multiphysics® Modelling software. Simulation results indicated that larger RF grid size contributed to the higher electric and magnetic field on equipment. Furthermore, without RF grid, electric and magnetic fields on the equipment were increased significantly (up to 100x). The maximum electric and magnetic fields were found to be near resonance enclosure size (299 mm for 500 MHz frequency source). The results showed that the presence of the RF grid for the EMI protection system was essential.


2007 ◽  
Vol 16 (5) ◽  
pp. 1931-1935
Author(s):  
Abdeq M Abdi ◽  
Alan R Kost
Keyword(s):  

Author(s):  
Alexander Sergeevich Bordyug

The article considers application of fiber optic devices in many devices due to their small size and high accuracy. The new fiber optic devices are equipped with a Slab Coupled Fiber (SCF) system. The SCF method uses resonant coupling between an optical fiber and a plate waveguide to create an intra-fiber device. Devices manufactured with this technology consist of polarizers, filters and sensors. Fiber optic systems have been used in torque measurement systems in the oil and gas industry and in aerospace industry. Using this system on ships is more expensive in comparison with the technologies based on strain gauges. There is offered using inexpensive optical measuring system with plate optical sensors. SCF devices use D-shaped fiber as a platform. Plate optical sensor (SCOS) devices are based on the use of an electro-optical sensor. Today, a D-fiber coupled magnetic field sensor has been developed. The device combines a magneto-optical plate waveguide with a D-fiber to measure magnetic fields. The plate coupled magneto-optical sensor (MO-SCOS) measures magnetic fields up to 2 A/m. Due to its short length the sensor can display fields with a spatial resolution of 1 mm.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1097 ◽  
Author(s):  
Xiaofeng Jiang ◽  
Chun Lin ◽  
Yuanqing Huang ◽  
Kan Luo ◽  
Jianhuan Zhang ◽  
...  

Herein we design a fiber sensor able to simultaneously measure the temperature and the pressure under harsh conditions, such as strong electromagnetic interference and high pressure. It is built on the basis of the fiber-optic Fabry–Perot (F–P) interference and the temperature sensitive mechanism of fluorescent materials. Both halogen lamps and light-emitting diodes (LED) are employed as the excitation light source. The reflected light from the sensor contains the low coherent information of interference cavity and the fluorescent lifetime. This information is independent due to the separate optical path and the different demodulation device. It delivers the messages of pressure and temperature, respectively. It is demonstrated that the sensor achieved pressure measurement at the range of 120–400 KPa at room temperature with a sensitivity of 1.5 nm/KPa. Moreover, the linearity of pressure against the cavity length variation was over 99.9%. In the meantime, a temperature measurement in the range of 25–80 °C, with a sensitivity of 0.0048 ms/°C, was obtained. These experimental results evince that this kind of sensor has a simple configuration, low-cost, and easy fabrication. As such, it can be particularly applied to many fields.


Author(s):  
Zachary S. Zutavern ◽  
Dara W. Childs

Historical attempts to measure forces in magnetic bearings (MBs) have experienced limited success as a result of relatively high uncertainties. Recent advances in strain-gauge technology have provided a new method for measuring MB forces. Fiberoptic strain gauges (FOSGs) are roughly 100 times more sensitive than conventional strain gauges and are not affected by electromagnetic interference. At the Texas A&M University (TAMU) Turbomachinery Laboratory, installing FOSGs in MBs has produced force measurements with low uncertainties. Dynamic flexibility transfer functions (DFTFs) exhibiting noticeable gyroscopic coupling have been identified and compared with finite element predictions. Comparison has verified the effectiveness of using MBs as calibrated exciters in rotordynamic testing. Many applications including opportunities for testing unexplained rotordynamic phenomena are now feasible.


Author(s):  
Xiaoguang Qi ◽  
Wen Wu ◽  
Shuang Wang ◽  
Junfeng Jiang ◽  
Wenjuan Jia ◽  
...  

Author(s):  
P. Choquet ◽  
R. Leroux ◽  
F. Juneau

A new line of fiber-optic sensors suited for structural and geotechnical monitoring purposes is presented. A Fabry-Perot strain gauge is contained in each of the new sensors introduced here: four embedded and surface-type strain gauges and one type of temperature gauge. Described here are the working and reading principles of the basic Fabry-Perot strain gauge. One of the gauge’s features that allows for temperature-compensated or noncompensated measurements is described, and the various sensors constructed around the gauge are presented. These newly developed sensors exhibit high accuracy and repeatability, as illustrated by various calibration tests reported here.


Sign in / Sign up

Export Citation Format

Share Document